- We have proposed NAS-Bench-Graph ([paper](https://openreview.net/pdf?id=bBff294gqLp), [code](https://github.com/THUMNLab/NAS-Bench-Graph), [tutorial](http://mn.cs.tsinghua.edu.cn/autogl/documentation/docfile/tutorial/t_nas_bench_graph.html)), the first NAS-benchmark for graphs published in NeurIPS'22. By using AutoGL together with NAS-Bench-Graph, the performance estimation process of GraphNAS algorithms can be greatly speeded up.
- We have supported the graph robustness algorithms in AutoGL, including graph structure engineering, robust GNNs and robust GraphNAS. See [robustness tutorial](http://mn.cs.tsinghua.edu.cn/autogl/documentation/docfile/tutorial/t_robust.html) for more details.
- We have supported graph self-supervised learning! See [self-supervised learning tutorial](http://mn.cs.tsinghua.edu.cn/autogl/documentation/docfile/tutorial/t_ssl_trainer.html) for more details.