Noteworthy improvements in this release include:
- a new website, (http://docs.enthought.com/distarray/), with links to
DistArray talks and presentations,
- redistribution for block-distributed (and non-distributed) DistArrays,
- experimental "quickstart" installation scripts,
- an easier API for `Context.apply`
- expanded and improved example notebooks, including a new parallel Gaussian
Elimination example by Prashant Mital,
- compatibility with NumPy 1.9,
- expanded TravisCI testing (OS X and Python 3.5),
- logos by Erick Michaud, and
- several bug-fixes and code improvements.
Existing features
DistArray
- supports NumPy-like slicing, reductions, and ufuncs on distributed
multidimensional arrays;
- has a client-engine process design -- data resides on the worker processes,
commands are initiated from master;
- allows full control over what is executed on the worker processes and
integrates transparently with the master process;
- allows direct communication between workers, bypassing the master process
for scalability;
- integrates with IPython.parallel for interactive creation and exploration of
distributed data;
- supports distributed ufuncs (currently without broadcasting);
- builds on and leverages MPI via MPI4Py in a transparent and user-friendly
way;
- has basic support for unstructured arrays;
- supports user-controllable array distributions across workers (block,
cyclic, block-cyclic, and unstructured) on a per-axis basis;
- has a straightforward API to control how an array is distributed;
- has basic plotting support for visualization of array distributions;
- separates the array’s distribution from the array’s data -- useful for
slicing, reductions, redistribution, broadcasting, and other operations;
- implements distributed random arrays;
- supports `.npy`-like flat-file IO and hdf5 parallel IO (via `h5py`);
leverages MPI-based IO parallelism in an easy-to-use and transparent way;
and
- supports the distributed array protocol [protocol]_, which allows
independently developed parallel libraries to share distributed arrays
without copying, analogous to the PEP-3118 new buffer protocol.
Planned features
Planned features include
- array re-distribution capabilities for more distribution types;
- lazy evaluation and deferred computation for latency hiding;
- examples of interoperation with Trilinos [Trilinos]_;
- distributed broadcasting support.
- integration with other packages [petsc]_ that subscribe to the distributed
array protocol [protocol]_;
- distributed fancy indexing;
- out-of-core computations;
- support for distributed sorting and other non-trivial distributed
algorithms; and
- end-user control over communication and temporary array creation, and other
performance aspects of distributed computations.
History and funding
Brian Granger started DistArray as a NASA-funded SBIR project in 2008.
Enthought picked it up as part of a DOE Phase II SBIR [SBIR]_ to provide a
generally useful distributed array package. It builds on NumPy, MPI, MPI4Py,
IPython, IPython.parallel, and interfaces with the Trilinos suite of
distributed HPC solvers (via PyTrilinos [Trilinos]_).
This material is based upon work supported by the Department of Energy under
Award Number DE-SC0007699.
This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied,
or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government or any agency thereof. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
.. [protocol] http://distributed-array-protocol.readthedocs.org/en/rel-0.10.0/
.. [Trilinos] http://trilinos.org/
.. [petsc] http://www.mcs.anl.gov/petsc/
.. [SBIR] http://www.sbir.gov/sbirsearch/detail/410257