New Features
- Added `data_doctor` function:
A versatile tool designed to facilitate detailed feature analysis, outlier detection, and data transformation within a DataFrame.
**Key Capabilities**:
- **Outlier Detection**:
- Detects and highlights outliers visually using boxplots, histograms, and other visualization options.
- Allows cutoffs to be applied directly, offering a configurable approach for handling extreme values.
- **Data Transformation**:
- Supports a range of scaling transformations, including absolute, log, square root, min-max, robust, and Box-Cox transformations, among others.
- Configurable via `scale_conversion` and `scale_conversion_kws` parameters to customize transformation approaches based on user needs.
- **Visualization Options**:
- Provides flexible visualization choices, including KDE plots, histograms, and box/violin plots.
- Allows users to specify multiple plot types in a single call (e.g., `plot_type=["hist", "kde"]`), facilitating comprehensive visual exploration of feature distributions.
- **Customizable Display**:
- Adds text annotations, such as cutoff values, below plots, and enables users to adjust various styling parameters like `label_fontsize`, `tick_fontsize`, and `figsize`.
- **Output Control**:
- Offers options to save plots directly to PNG or SVG formats, with file names reflecting key transformations and cutoff information for easy identification.