+ Adding the kernelised version of RIM with: `KernelRIM`
+ Adding the dynamic version of paths for feature selection in sparse models. A simply argument `dynamic=True` activates the dynamic mode.
+ Possibility of passing custom kernels and metrics to sparse models. This is not compatible with the dynamic mode.
+ No need to specify any longer the full partition of the features in the `groups` arguments of the sparse models
+ New GEMINIs: `HellingerGEMINI`, `TVGEMINI` and `KLGEMINI`
+ Introducing generic models that can be combined with any GEMINI
+ `gemclus.linear.LinearModel`, `gemclus.mlp.MLPModel`, `gemclus.nonparametric.CategoricalModel`,
`gemclus.sparse.SparseLinearModel`, `gemclus.sparse.SparseMLPModel`
+ The GEMINI parametrisation of DOUGLAS can now be done through string
+ The dedicated MMD and Wasserstein models remain and support custom kernel/metric parameters
+ Fusing GEMINIs into a single class per distance
+ `gemclus.gemini.MMDOvA` and `gemclus.gemini.MMDOvO` are now `gemclus.gemini.MMDGEMINI`
+ `gemclus.gemini.WassersteinOvA` and `gemclus.gemini.WassersteinOvO` are now `gemclus.WassersteinGEMINI`
+ Both the MMD and Wasserstein GEMINI now support custom kernel/metric parameters
+ Fixing a gradient mistake in the `gemclus.MI`