We include data to reproduce examples in the Jupyter Notebooks. The 3D MSC spheroid imaging data will be included shortly.
Zebrafish telencephalon image
Multichannel labeled image including fluorescence intensities for DAPI, ZO1, GFAP and PCNA. The structure of the image is available immediately below:
python
import matplotlib.pyplot as plt
from tifffile import imread
image_path = 'zebrafish_brain_cell_labels.tiff'
image = imread(image_path)
title = ['DAPI',
'ZO1',
'GFAP',
'PCNA',
'labels']
fig, ax = plt.subplots(1,5, figsize = (10,3))
for i in range(5):
ax[i].imshow(image[...,i], cmap = 'gray')
ax[i].set_title(title[i])
ax[i].axis('off')
![image](https://user-images.githubusercontent.com/17712175/159466174-9f80e421-babf-4c94-90ad-53519a6907b7.png)
Data tables
The release contains two relevant CSV files with information on single-cell positions (x and y coordinates), cell types etc. from which to build the network.
Zebrafish telencephalon data
This data table contains single cell information (cell position and cell type) based on manual analysis of imaging data.
python
import pandas
zebrafish_cell_data = pandas.read_csv('zebrafish_cell_properties.csv')
print(zebrafish_cell_data.head().to_markdown(index=False))
| x | y | z | cell_type | cell_properties | label | GFAP | PCNA |
|--------:|--------:|--------:|------------:|:------------------|--------:|-------:|-------:|