Hhb

Latest version: v2.11.4

Safety actively analyzes 689525 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 1 of 2

0.7

* Initial automatic scheduling support
* Initial command line driver interface
* WebGPU and webassembly support
* Better first class rust support in the codebase
* Intial Hexagon support
* Bring your own codegen (BYOC) support

The community also continues to bring high quality improvements to the existing modules including, but not limited to: better frontend coverage, performance, quantization, microTVM and dynamic shape support.

New Features
Automatic Scheduling (Experimental)
* Phase 0: Ansor minimum system for auto schedule generating 5962
* Phase 1: Access Analyzer 6103
* Phase 1: Add `follow_split` and `follow_fused_split` steps 6142
* Phase 1: Add `pragma`/`storage_align`/`rfactor` steps 6141
* Phase 1: Add RPC Runner 6077
* Phase 1: Add `annotation`/`compute_at`/`compute_root`/`compute_inline` steps 6073
* Phase 1: Add `cache_read`/`cache_write` steps 6107
* Phase 1: Rename namspace form `auto_schedule` to `auto_scheduler` 6059
* Phase 1: The base class for cost models 6187
* Phase 1: feature extraction for cost models 6190
* Phase 1: XGBoost Cost Model 6270
* Phase 2: Basic GPU Sketch Search Policy 6269
* Phase 2: Evolutionary Search 6310
* Phase 2: Update heavy operations with `parallel_for` 6348
* Parallel the InitPopulation (6512)
* Tutorial: Using the template-free auto-scheduler on CPU (6488)

BYOC
* External codegen support in Relay (4482),(4544)
* Bring Your Own Codegen Guide -- Part 1 4602
* Bring Your Own Codegen Guide -- Part 2 4718
* Relay annotation and partitioning for external compilers 4570
* JSON Runtime with DNNL End-to-End Flow 5919
* Handle one symbol for each runtime 5989
* Run accelerator specific optimizations 6068
* Arm Compute Library integration 5915
* Retire the example json runtime 6177
* `json_node.h` should include `data_type.h` 6224
* Improve installation tutorial 6170
* Add support for dense (fully connected) layer 6254
* Introduce the Ethos-N BYOC integration 6222
* Enable remote device via environment variables 6279
* Improved pooling support 6248
* Add support for quantized convolution 6335
* CoreML codegen 5634

Operator Coverage
* Add `strided_set` operation (4303)
* Add support for conv3d (4400), pool3d (4478), 3d upsampling ops (4584)
* Add group convolution for VTA (4421)
* Add 1d deconvolution op (4476)
* Allow batch matmul to be fused into injective ops (4537)
* Add native depthtospace and spacetodepth operators (4566)
* Add CUDNN conv3d support (4418)
* Dilation2D operator support 5033
* Isfinite operator 4981
* Unravel Index operator 5082
* Add thrust support for nms 5116
* Resize3d, Upsample3d op support 5633
* Add operator Correlation 5628
* `affine_grid` and `grid_sample` 5657
* Sparse to dense operator 5447
* `Conv3d_transpose` op support added 5737
* add op `crop_and_resize` 4417
* Add bitwise ops 4815
* Sparse to dense operator 5447
* support dynamic NMS(Non Maximum Suppression), symbolic begin, end, and strides for strided_slice 4312
* `Conv3d_transpose` op support added 5737
* ReverseSequence operator 5495
* Conv1D 4639
* 1D Pooling 4663

Quantization
* Channel wise quantization - Quantize & Requantize 4629
* Support QNN ops. 5066
* Adding support for QNN subtract op 5153
* TFLite QNN Tutorial 5595
* Tutorial: Deploy Quantized Model on CUDA 4667
* Support asymmetric per-layer quantized operators 6109

Relay
* Add convertlayout pass in Relay (4335, 4600)
* Added Merge Composite pass 4771
* Call graph for relay 4922
* Add inline pass 4927
* Target annotation for external codegen 4933
* GradientCell Relay Pass 5039
* Add MergeCompilerRegions pass 5134
* Non-recursive Graph Vistor and Rewriter (4886)
* [Blocksparse] Pipeline for lowering dense model to sparse-dense (5377)
* Relay op strategy 4644
* Static Tensor Array (5103)
* Memory planner (part 1) 5144
* ONNX codegen 5052
* Add Parser 2.0 5932, part 2 6162
* Basic block normal form 6152
* Convert Layout pass. 4664
* Pattern Language, Matcher, Rewriter, and Function Paritioner 5231

Runtime and Backend
* Add ADTObject POD container type (4346)
* TFLite RPC runtime (4439)
* Standardized graph runtime export (4532)
* MISRA-C compliant TVM runtime 3934
* Add String container 4628
* Introduce Virtual Memory Allocator to CRT (5124)
* Initial implementation of Hexagon runtime support (5252)
* FastRPC interface for Hexagon runtime (5353)
* CoreML Runtime (5283)
* AutoTVM + uTVM for Cortex-M7 (5417)
* Windows Support for cpp_rpc (4857)
* Implement TVMDSOOp(TensorFlow custom op) for TVM runtime (4459)
* WebGPU support 5545
* TVM WebAssembly JS Runtime 5506
* Hexagon driver for offloading kernels to simulator 5492
* Introduce runtime::Array 5585
* Allow non-nullable ObjectRef, introduce Optional. (5314)
* Introduce static slots for common objects. (5423)
* ntroduce RValue reference(move) support to TypedPackedFunc (5271)
* Introduce MetadataModule to separate code compilation/interpretation and weight initialization 5770
* Support module based interface runtime 5753
* Add TVM application extension with WASM runtime 5892
* Provide guide to user who has difficulty register SEqualReduce (5300)

Rust Support
* Revive the Rust + SGX refactor 4976
* Improve Rust bindings: Map, Array, String, various IR nodes 6339
* Rust Refactor Stage 4: Rewrite Rust graph runtime to use new APIs 5830
* Second stage of Rust Refactor 5527
* tvm crate stage 3 of Rust refactor 5769
* Add first stage of updating and rewriting Rust bindings. 5526

TIR
* Introduce StructuralHash for the Unified IR. 5160
* Introduce StructuralEqual Infra for the unified IR. 5154
* Introduce ExprDeepEqual, Remove IRDeepCompare 5206
* [TIR] Introduce BufferLoad/Store (5205)
* Improved massive build times caused by tir.floormod and tir.floordiv. Fixed Topi testcase. 5666
* Buffer logger assert removed 6147
* Enhance VerifyGPUCode 6194
* HoistIfThenElse added 6066
* Hybrid Script Support for TIR 6227
* Migrate Low-level Passes to Pass Manager 5198
* HoistIfThenElse added 6066
* Hybrid Script Support for TIR 6227
* Block scope hoisting added 6238

TE
* reverse-mode autodiff without any optimization 5121
* Tensor Expression Debug Display (TEDD) 4651
* Optimize and eliminate the Jacobian tensor for te.autodiff 6078

TVMC(Experimental)
* TVMC - A command line driver for TVM (Part 1) 6112
* TVMC - Linting error on onnx command line driver frontend 6536
* TVMC - Command line driver 'compile' (part 2/4) 6302
* TVMC - Introduce 'tune' subcommand (part 3/4) 6537
* TVMC - Introduce 'run' subcommand (part 4/4) 6578
* TVMC - Getting started tutorial for TVMC 6597


Feature Improvement
Accelerator and Microcontroller Support
- Cleanup legacy verilog code (4576)
- uTVM support for ARM STM32F746XX boards (4274)
- Add --runtime=c, remove `micro_dev` target, enable LLVM backend 6145

Arithmetic Analysis
* Linear system and equation solver (5171)
* Inequalities solver 5618
* Improve IntervalSet's floormod (5367)
* Remove legacy const pattern functions (5387)
* Handle likely in IRMutatorWithAnalyzer 5665
* ExtendedEuclidean merge impl to int_operator 5625
* Rewrite simplify fix for Vectorized Cooperative Fetching 5924

AutoTVM and Graph Tuner
* Adding ROCM schedules for TOPI (4507)
* NHWC conv2d schedule templates for ARM (3859)
* Use VM compile to extract autotvm tasks 4328
* Download fallback schedule file if it does not exist 4671
* Ignore error when removing tmpdir 4781
* Fix a bug in generating the search space 4779
* Minor bug fixes in AutoTVM for QNN graphs 4797
* Fix autotvm customized template 5034
* Add opt out operator for `has_multiple_inputs` for graph tuner 5000
* Customize SI prefix in logging (5411)
* Update XGBoost verbosity option 5649
* Support range in index based tuners 4870
* Enable random fill and CPU cache flush for AutoTVM and Ansor (6391)
* Auto-scheduler tutorial for GPU and necessary refactor/fix (6512)

BYOC
* [BYOC] Bind constant tuples in graph partitioner (5476)
* [BYOC] Add support for composite functions in BYOC (5261)
* [BYOC] Register pattern tables from external codegens (5262)
* [BYOC] Enhance partitioning and external codegen (5310)
* [BYOC] Refine AnnotateTarget and MergeCompilerRegion Passes (5277)
* [BYOC] Use Non-Recursive Visitor/Mutator (5410)
* [BYOC] Refine DNNL Codegen (5288)
* [BYOC] Add example of Composite + Annotate for DNNL fused op (5272)
* [BYOC] Prevent duplicate outputs in subgraph Tuple (5320)
* [BYOC] Introduce further operator support (6355)
* [BYOC] Support input nodes with multiple entries (6368)
* [BYOC] Add maximum support for float32 (6506)

Codegen
* Intrinsic dispatching with OCML instead of LLVM for ROCm (4499)
* Make target codegen take IRModule and PrimFunc. 5107
* Enhance CUDA codegen for SelectNode 4983
* Vectorization for intrinsics 5101
* [LLVM] Do not use `x86_vcvtph2ps_256` intrinsic with LLVM 11+ (5267)
* [LLVM] Use llvm::ElementCount with LLVM 11+ when creating vectors (5265)
* [LLVM] Use llvm::FunctionCallee in IRBuilder::CreateCall with LLVM 11+ (5338)
* [LLVM] Include Support/Host.h for declaration of getDefaultTargetTriple (5268)
* [LLVM] Replace calls to Type::getVectorNumElements (5398)
* [LLVM] Use ArrayRef in calls to CreateShuffleVector (5399)
* [LLVM] Use llvm::Align with LLVM 11+ to avoid warnings (5264)
* [CodeGen] Cleanup generated code (5424)
* Rename `target_id` => `target_kind` 6199
* 64-bit RPi4b target 6211
* Creating Target from JSON-like Configuration 6218
* Add python binding to new JSON target construction 6315
* Use target class in all codegens 6347
* Initial support for Hexagon codegen 6261
* Add --runtime=c, remove `micro_dev` target, enable LLVM backend 6145
* Add tvm::support::hexdump() debug utility 6154
* Adding AMD codegen unit tests (4509)
* Support cuda tensorcore subbyte int data type in auto tensorcore 4546
* Handle empty LLVMModule in GetFunction 5146
* Support int4/int8 conv2d tensor core with HWNC layout 6121

Dynamism Support
* Add shape function for `zero`, `zeros_like`, `ones`, `ones_like` (4448), `tile` (4441)
* Support symbolic newshape for Reshape 5429
* Support symbolic TopK, Ones, Zeros and Full 5459
* Add `shape_of` instruction 5855
* symbolic `max_output_size` 5844
* Dynamic TopK Op 6008
* Dynamic `broadcast_to`, `zeros`, `ones` 6007
* Add dynamic reshape grad 6080
* Keep fixed dim when unifying dynamic shape 5795
* OneHot operation 6209
* Add Dynamic Resize Op 6198
* Dynamic full operator 6260
* Dynamic upsampling relay op 6273
* Dynamic Tile Op 5983

Frontend and User Interface
* TFLite parser support for `transpose_conv` (4440), `unpack` (4447)
* LLDB pretty printers for relay (4453)
* ONNX to Relay converter op support: expand op (4483)
* ONNX `auto_pad` in conv and convtranspose (4563)
* TF to Relay converter op support (4504) (4551) (4484)
* Remove unnecessary cast of constants in ONNX converter (4573)
* Add support for tf.Keras networks in Relay Keras frontend 4630
* Add conv3d 4604
* Fix incorrect calculations in tf SLICE 4518
* Dynamically calculate `input_stats` of any `fake_quant` range 4789
* LSTM Support 4825
* Add `MIRROR_PAD` operator 4822
* use qnn helper function in softmax 4840
* Add Resize op converter 4838
* Add support for `TFLite_Detection_PostProcess` 4543
* Fix tests for tflite unary elemwise operations 4913
* GaussianDropout/Noise parsing support 4928
* Add parser support for 'square' operator 4915
* `make_loss` operator support 4930
* Add parser support for `l2_normalization` 4966
* ReadVariableOp operator support 4952
* Check graph inputs match expected 4992
* support multiply outputs 4980
* TFLite: Using real image for QNN testing. 4816
* TFLite: `FLOOR_MOD` & `FLOOR_DIV` support 4971
* PyTorch: Upsampling op support and enable registering a user defined op conversion map 4961
* PyTorch: fix unordered dictionary problem for python version under 3.6 4982
* Operator support NonZero 5073
* Upsampling op support and enable registering a user defined op conversion map 4961
* Check graph inputs match expected 4992
* Add support for quantized models via QNN 4977
* Add initial control flow support 4964
* Remove FP32 piggy back and use QNN add/mul/concatenate 5061
* Add missing upcast to uint8 `avg_pool` conversion 5089
* Add initial 3D op support and test on Resnet 3D 5075
* Fix conv2d conversion for group conv (group > 1 but != in channels) 5132
* Add support for `max_pool1d` 5142
* Add support for split 5174
* `FLOOR_MOD` & `FLOOR_DIV` support 4971
* Activation functions support 4978
* Round op parsing support added 5022
* DepthToSpace and SpaceToDepth support 5041
* `TOP_K` op parser support 5051
* ReadVariableOp operator support 4952
* Support multiply outputs 4980
* `reduce_any` op parsing support 4926
* TensorFlow Parser Control Flow Enhancement 5020
* TensorFlow Frontend support with shared params 5042
* Support for AddV2 in Relay Tensorflow frontend converter. 5046
* conv3d frontend operator support 5080
* `max_pool3d` and Averagepool3d operator support 5085
* Support for Atan/Atan2 in Relay Tensorflow frontend converter. 5104
* Use leaky by default for LeakyReLU 5192
* Conv3D ONNX support and `conv3D_ncdhw` x86 schedules 4949
* Add support for FusedBatchNormV3 5065
* Activations for pytorch 5194
* Dropouts And InstanceNorm support added 5203
* [Frontend] Asymmetric padding of convolution support (4803)
* [ONNX]Pool3d & upsample3d op support (5135)
* Add TopK to ONNX Frontend (5441)
* Add RoiAlign to Onnx frontend (5454)
* [PYTORCH]AvgPool3d, MaxPool3d and Squeeze op support (5220)
* [PYTORCH]celu, gelu, selu activations (5263)
* [Pytorch]layernorm bug fix and testcase updated (5257)
* [PYTORCH]LayerNorm support added (5249)
* [PYTORCH]GroupNorm op support added (5358)
* [PYTORCH]Logical & Bitwise operator support (5341)
* [PYTORCH]Tensor creation ops support (5347)
* [PYTORCH]cosh,sinh,log2,log10,log1p op support (5395)
* [PYTORCH]Rsub, Embedded, OneHot ops support (5434)
* [PYTORCH]Abs, Arange, Softplus ops (5295)
* [PYTORCH]isNan, isinf, isfinite, ceil, clamp, round ops (5316)
* [PYTORCH]Activations for pytorch (5194)
* [PYTORCH]Repeat, Reciprocal & Reshape Op support (5280)
* [PYTORCH]`Reduce_ops` support added (5308)
* [PYTORCH]Take, Topk op support (5332)
* [PYTORCH]Dropouts And InstanceNorm support added (5203)
* [PYTORCH]Unary Ops frontend support. (5378)
* [Torch] Support Python list, more realistic recurrent networks (5306)
* [PYTORCH]where, addcdiv, addcmul op support (5383)
* [Torch] Add support for split (5174)
* [Torch] Fix up graph input handling (5204)
* [TFLITE]Logical not op support (5475)
* [TFLITE]Hard Swish & MobilnetV3 model testing (5239)
* [TFLITE]Gather, StridedSlice op support added (4788)
* [TFLITE] Match TFLite shape for SSD custom op (5473)
* Factor out import of common tflite.Operator in tflite frontend. (5355)
* [TFLite] support for FILL and `SPLIT_V` operators (5330)
* [TFLite] `L2_POOL_2D` operator (5452)
* [TFLite] Add config option to specify FlatBuffers location (5425)
* [TFLITE]Logical not op support (5475)
* [TENSORFLOW]reduce ops updated (5180)
* [TENSORFLOW] Fix `gather_nd` indices (5279)
* [TensorFlow]Improve TensorFlow Static Shape Tensor Array (5243)
* [KERAS]Minimum & AlphaDropout op support (5380)
* [KERAS]Embedding layer (5444)
* [KERAS]`Max_pool3d` and Averagepool3d operator support (5085)
* [CAFFE2]add Mul and ConvTranspose operator (5302)
* [MXNET]DepthToSpace & SpaceToDepth Operator (5408)
* [MXNET]broadcast and logical op support (5461)
* [MXNET] Use leaky by default for LeakyReLU (5192)
* [MXNET] support elemwise logic ops (5361)
* [Frontend|MXNet] SwapAxis operator support (5246)
* [RELAY] Move frontend utils (5345)
* [Pytorch] Fix translation of transpose when axis argument is as a list (5451)
* LpPool Support added 5696
* Skip ADD inside Gemm op when vector is zero 5697
* ReduceL1, ReduceL2, ReduceSumSquare, ReduceLogSum ops added 5721
* MaxRoiPool, Mod & Xor op support added 5729
* Skip multiply with 1.0f constant for GEMM import 5800
* StatefulPartitionedCall/PartitionedCall Ops support added 5617
* Don't add cast for batch norm when type isn't changing 5731
* Conv3d Transpose OP added 5775
* expand bug fix 5576
* Support `max_pool2d_with_indices` 5549
* Add prim::device op 5584
* ImplicitTensorToNum support added 5603
* Matmul fix for `batch_matmul` 5604
* ReflectionPad2d op 5624
* Padding op support 5638
* Minor bug fixes 5683
* `floor_divide` support for squeezenet 5702
* ReplicationPad support added 5708
* aten::norm support added 5776
* broadcast and logical op support 5461
* MaxPool3d and AvgPool3d Ops support added 5614
* Softmin, trunc op support added 5715
* conv3d and `conv3d_transpose` addedx 5814
* Model importer to be compatible with tflite 2.1.0 5497
* Nit: Function names made consistent 5515
* Select op support for tflite frontend 5486
* `GATHER_ND` 5508
* Quantize & Dequantize op 5394
* Fully connected op conversion made in sync with TFLite 5510
* `ADD_N` operator 5474
* onnx, mxnet, pytorch mathops added 5561
* abs, round, reciprocal, sign, softsign, `hard_sigmoid` ops support 5587
* Gather nd bug fix for one dim support in tensorflow 5588
* Add parser support for shape and range 5329
* Darknet support batch size for yolo 5688
* Improve Control Flow and TensorArray 5699
* MXNet: Softmin, trunc op support added 5715
* MXNet: conv3d and `conv3d_transpose` addedx 5814
* MXNet: Add parser for `contrib.box_decode` 5967
* Onnx: ReduceL1, ReduceL2, ReduceSumSquare, ReduceLogSum ops added 5721
* Onnx: MaxRoiPool, Mod & Xor op support added 5729
* Onnx: Skip multiply with 1.0f constant for GEMM import 5800
* Onnx: Fix an issue with 5755 and add Batch norm unit tests. 5845
* TensorFlow: StatefulPartitionedCall/PartitionedCall Ops support added 5617
* TensorFlow: Don’t add cast for batch norm when type isn’t changing 5731
* TensorFlow: Conv3d Transpose OP added 5775
* Add parser support for shape and range 5329
* Darknet support batch size for yolo 5688
* Improve Control Flow and TensorArray 5699
* Improve TF Parser to keep output nodes for `saved_model` 5794
* Add parser support for `relu6`, `leaky_relu`, `relu_n1_to_1`, `log_softmax` 4805
* Fix TF Dynamic input shape 5825
* Support a few contrib ops in mxnet 5819
* Improve TF Parser to keep output nodes for `saved_model` 5794
* Add parser support for `relu6`, `leaky_relu`, `relu_n1_to_1`, `log_softmax` 4805
* Check all unsupported ops before raising an exception 5929
* Add Pytorch advanced indexing 6318
* Support `index_select` 6295
* Fix cast to long 6301
* Fix dtype handling for modules with integer parameters 6311
* pytorch frontend support conv1d 6203
* Add cast to double, fix flatten conversion 6357
* Fix aten::max and aten::min conversion 6372
* Match pytorch 1.6 googlenet pretrained model (6201) 6212Add unbiased variance op and corresponding support in pytorch frontend 6232
* Implemented PADV2 Operator for TFLite and added support for constant values in PAD. 6167
* Implemented `ONE_HOT` Operator for TFLite. 6223
* Implemented `EXPAND_DIMS` Operator for TFLite. 6243
* Implemented `REVERSE_V2` Operator for TFLite. 6304
* Implemented `MATRIX_SET_DIAG` Operator for Relay/TOPI and TFLite Frontend. 6303
* RESHAPE with dynamic shape arg in TFLite frontend 6208
* Constant input attr added to fully connected operation in TFLite frontend 6228
* Gather operation with indices as tensor expr in TFLite frontend 6168
* Added support for tflite quantized maximum and minimum 6018
* Unary ops support added in frontend 6196
* Introduce caffe frontend for tvm 6206
* Keras softmax and prelu fix under NHWC 6278
* add support for MXNET numpy operators 6054
* Refine tensorflow frontend 1.x & 2.x compatibility 6240
* Reduceops support added to frontend 6252
* Update precision in the ONNX `strided_slice`, update precision of ToScalar 6272
* NHWC import support. 4899
* Refine tensorflow frontend 1.x & 2.x compatibility 6240
* Fix node indices attribute error for tensorflow 2.3 6288
* Support NMSv4 6085
* Support for PyTorch Non-Maximum Suppression 6314
* ReplicationPad support added 5708
* MXNet pre-quantized BERT 6039
* Keep parameter names from PyTorch 5887
* Refine LSTMBlockCell to support dynamic rnn 5963

Relay
* Add function attributes to IR hash (4479)
* Relay passes lookup overhead optimization (4594)
* Add `half_pixel` option to Resize op 4610
* Skip example json runtime test when config is not set 4614
* Test `tensor_array` in vm 4608
* Improve `memory_allocation` pass to support multiple i/o dynamic kernels 4595
* Add unit test for `tensor_array_split` 4619
* Add parses support for unary elemwise ops 4634
* Add parses support for SLICE 4502
* Added pool autopadding and simplified converters. 4672
* Fix meaning of `conv2d_transpose` `output_padding` parameter 4318
* Use packed func macro for external codegen 4710
* Fix `_parse_param` bug 4711
* Add constant input support for elemwise ops 4666
* Add parser support for squared difference 4652
* Add type check to dense 4724
* Invoke tvm::build from relay `compile_engine` and interpreter 4723
* Broadcast condition, x, and y for Where op 4774
* Add parser support for relational ops 4695
* Remove duplicated BindParamByName function in VM compiler 4793
* Use SimplifyInference for L2 Normalization. 4795
* Expose vm OptimizeModule to Python 4800
* Add parser support for logical operators 4642
* Conv2D padding representation 4787
* Add support for quantized LOGISTIC 4696
* Fix VM compiler for while loop with free vars 4889
* Fix bug in re-processing call node in MergeComposite pass 4879
* Expose FunctionGetAttr to Python 4905
* Add a PyTorch to Relay Parser 4497
* Support data types for CSourceModuleCodegen args and output 4934
* Clean up and refactor PyTorch frontend 4944
* Relay pass to use fast exp/tanh 4873
* BatchNorm support with run-time mean and variance calculation 4990
* Reduce plevel of conv2d winograd implementation on cuda 4987
* Add operation tan to TVM 4938
* Outline and inline lifted functions for external codegen 4996
* Remove primitive attribute from composite function 5014
* Refactor Relay Python to use new FFI 5077
* Fix relay node registration after refactor 5083
* `Codegen_c.h` should include relay.function 5093
* Move expr.Function to function.py 5087
* Propagate constant to subgraphs 5094
* Adjust strategy plevel to achieve expected performance by default 5118
* Added a AnnotatedRegion utility class 5030
* Support TupleGetItem in body of pattern 5106
* Partition graph codestyle fixes 5202
* Re-wrote the Graph Partitioner to support multiple outputs 5143
* Fixes to MergeCompilerRegions 5195
* Refactor build module to take IRModule 4988
* Separate analysis and transform passes 5035
* Relay Node::make to constructor 5128
* relay::StructuralHash to tvm::StructuralHash 5166
* Conditions updated to cover better user scenarios 5043
* Replace UseDefaultCompiler with GetAttr 5088
* Return empty CSourceModule when no `lowered_funcs` exists in Relay mod 4847
* Clean up for memory pass to enable heterogenous execution support. (5324)
* Remove re-exports of tvm.transform (5337)
* [Refactor] Add memoized expr translator for use by backend codegen (5325)
* Legalize - Use Non-recursive Rewriter. (5296)
* Add additional check before re-using the cached match 5552
* Remove kCompiler attr from external functions 5615
* Pattern Language MergeComposite 5656
* Support Tuple Output in C/DNNL Codegen 5701
* Infer types in MergeComposite 5766
* Convert PatternGrouper to do pre-order, non-recursive analysis 5653
* Remove constants from partitioned functions 5663
* Add a check for null function attributes 5674
* Add ConstantPattern 5689
* Conditionally Embedding Constants in Partitioned Functions 5693
* Simplify Pattern API Implementations 5703
* Add ShapePattern and DataTypePattern 5760
* Remove unnecessary print 5642
* Improve Shape Func handling for Tuple inputs 5467
* Relay updated with String 5578
* Fix the creation of tuple of tuples in PartitionGraph 5616
* Preserve type information in Merge Composite 5640
* Move `compiler_begin`/`end_op` to local static objects 5622
* Fix `dataflow_pattern`.rewrite() hang if Match in IR 5680
* Fix segfault in pretty print when ObjectRef is null 5681
* Move `fallback_device` to config 5690
* Replace `build_config` with PassContext 5698
* Clear compile engine after task extraction 5724
* Add `storage_order` ignore in pooling layer. 5781
* Tweak cublas/cudnn priority level 5820
* Skip Unknown Function Symbols 5888
* Allow every runtime module to handle constants 5885
* handle Tuple/TupleGetItem in first order gradient 5946
* Add resnet-3d & Update network definitions for NHWC layout 5945
* Use TargetNode::attrs for Target serialization 5993
* each option of target str should only contain one ‘=’ 5988
* Rename `target_id` => `target_kind` 6199
* 64-bit RPi4b target 6211
* Add resnet-3d & Update network definitions for NHWC layout 5945
* Small bug fix for Conv1D imports. 5995
* Move `invoke_tvm_op` and `shape_func` to vm dialect 5958
* GRU Layer Support 6020
* Add pass for getting calibration data from a relay module 5997
* Merge two consecutive reshape ops 6052
* Add operation `scatter_add` to relay, based on scatter implementation. 6030
* i64 indices 5235
* Port `eliminate_common_subexpr` to non-recursive form 6134
* Fix interpreter for dyanmic shape input of `ndarray_size` 6086
* Allow to config allocator type and refactor vm code structure 6105
* Handle `ndarray_size` in FoldConstant 6156
* when converting constant nodes with types of int64 or float64 6159
* Add ReshapeTensor instruction in the VM to replace the reshape op 6089
* Support combine multiple dense op just into dense 6062
* Add unbiased variance op and corresponding support in pytorch frontend 6232
* Specify additional layouts in convert layout pass 5422
* Safe check added for Merge Composite Call Node 5562
* Non recursive partitioning 5493
* Support combine multiple dense op just into dense 6062
* Make the max number of fused ops configurable 6327
* Implementation of the dynamic pad operator 6284
* change device annotation from post DFS to recursive 6124
* Make check stricter: disallow inserting function with free vars into module 6313
* Make check stricter by using Feature. Fixed multiple bugs 6326
* Resize support for NCHW-convertible layouts 6293
* Make AutoDiff thread through global function 6336
* Create Interpreter for each constant subgraph 6195
* Add Dynamic reshape to a dynamic namespace and add DynamicToStatic Pass 5826
* Expose relay BindParamsByName to Python 4751
* Implement pass manager tracing API 4782
* Move Ops in relay.op.contrib 4942
* Conditions updated to cover better user scenarios 4951
* [External codegen] Add test cases for fused ops with manual annotation (4741)
* Multiple output support, reshape, split ops added 6296

Operator Coverage
* Allow empty tensor for `reshape`, `tile` and `strided_slice` 4618
* Fix meaning of `conv2d_transpose` `output_padding` parameter"; 4708
* Remove cpp upsampling and resize op 4769
* upsample operator 'NCHWinic' format support. 4791
* Injective schedule improvement 4786
* Enable vectorization on fp16 type 4867
* Support for Int8 schedules - CUDA/x86 5031
* New PR to re-add tan to TVM 5025
* Register topi schedule for Relay `fast_exp` and `fast_tanh` 5131
* Move Dilation2d from nn to image namespace 5110
* Use Thrust sort for argsort and topk 5097
* Conv2d and Dense ops support on Tensor Core 5099
* Setting workload correctly for Depthwise Spatial conv ARM. 5182
* Adding a few missing math intrin 5011
* Missing vectorize for depthwise conv2d. 5196
* [TOPI] Using x86 schedules for ARM conv2d (5334)
* [TOPI-ARM] Do not alter layout if layout is NHWC (5350)
* [TOPI] Setting workload correctly for Depthwise Spatial conv ARM. (5182)
* [OP] Add `fast_erf` implementation (5241)
* [Topi] Tensorcore support for Conv3D (5284)
* [intrin] a few more math functions (5468)
* [Intrinsic] Add log1p, ldexp, atan2, hypot, nextafter, copysign (5312)
* [topi] Add operation relay.nn.dilate() which calls topi.nn.dilate() (5331)
* [Topi x86] Missing vectorize for depthwise conv2d. (5196)
* [TOPI x86] Adding `unroll_kw` config option for depthwise conv2d. (5197)
* [Topi] Breakdown topi.cc into smaller files (5253)
* ReduceLogSumExp Operator support 5453
* Math ops added 5502
* Enable blocking format in x86 conv2d and fold scale axis 5357
* Add operation gather to relay. 5716
* Add `storage_order` ignore in pooling layer. 5781
* Fix bifrost spatial packing conv2d auto tune 5684
* Fix reshape usage in ARM schedule 5732
* Block sparse dense on cuda 5746
* Improve CUDA softmax scheduling 5600
* block sparse dense on cuda 5746
* pass-by-value -> pass-by-const-reference 5783
* Using MKL blas for quantized dense 6115
* topi -> tvm/topi 6186
* Use auto-tuner to improve `conv2d_gemm` performance 6117
* Improve CUDA `conv2d_transpose_nchw` 4762
* Add CUDA conv2d for NHWC layout 4737
* `conv3d_ndhwc` schedule 4775
* Fast exponent 4790
* Add Scatter to Topi/Relay/ONNX via hybrid script 5619
* Split MKL from BLAS. 6182
* Change the meaning of `conv3d_transpose` `output_padding` to match `conv{1,2}d_transpose` 6065
* Gather op support added 6013

Runtime and Backend
* Cythonize NDArray.copyto (4549)
* Unified Object System runtime refactor (4578, 4581, 4603)
* VM profiler: sort VM stats by time (4601)
* Update RPC runtime to allow remote module as arg (4462)
* Refactorying system lib and dso lib into library module (4481)
* Improve TSIM virtual memory mapping (4545)
* make adt tag signed 4605
* Improve TVMBackendPackedCFunc to allow return val 4637
* EdgeTPU runtime for Coral Boards 4698
* Fix memory leak when using openMP 4811
* Fix memory leakage of TVMByteArray 4856
* Fix `TVM_DLL_EXPORT_TYPED_FUNC` to work on Windows 4955
* Fix memory leak when using openMP 4811
* Export GraphRuntime in `tvm_runtime.dll` 5002
* MISRA-C compliant TVM runtime 3934
* Update the `type_keys` to reflect the code-org 5074
* Fix AttrEqual for Array and StrMap, double 5054
* Export GraphRuntime in `tvm_runtime.dll` 5002
* Fix unused-value warning 5140
* crt error handling 5147
* Bundle deployment with static linking 5158
* Implemented kDLCPUPinned (cudaMallocHost) 4985
* Explicitly cast min/max operands 5090
* `ref_counter` -> `ref_counter_` 5184
* Expose runtime::String to Python (5212)
* [FFI] Refactor runtime.String to subclass str (5426)
* [RUNTIME] Auto conversion from str to runtime::String in PackedFUnc (5251)
* [RUNTIME] Improved Packed FFI for optional. (5478)
* [Hexagon] Add `hexagon_posix.cc` to TVM/RT sources in the right place (5346)
* [FFI] Refactor runtime.String to subclass str (5426)
* Fix workspace 5503
* Store nullptr PackedFunc as nullptr for better error propagation 5540
* Improve PackedFunc robustness 5517
* Seg fault in WorkspacePool's destructor (5632) 5636
* Resolve constexpr issue in debug mode. 5651
* Add `compile_shared` option to linux compile utility fn 5751
* Call sync in CopyFromRemote and CopyToRemote 5512
* Fix the multihop cpu case 5522
* Improve RPCServer AsyncIO support. 5544
* Modularize the RPC infra 5484
* Add `compile_shared` option to linux compile utility fn 5751
* Overload string operators 5806
* Only initialize required module 5926
* if a param not in input, we should still consume it’s data 5990
* init TVMPackedFunc’s name 6044
* Enable auto conversion `String->DLDataType` 6214
* Support random fill 5913
* Use new to avoid exit-time de-allocation order 6292
* Add `parallel_for` support to run a loop in parallel 6275
* Solve ARM BIG.LITTLE heterogeneous multicores 4747
* [RUNTIME] Quick fix PackedFunc String passing (5266)
* Introduce runtime::String::CanConvertFrom 5718
* Restore the StrMap behavior in JSON/SHash/SEqual 5719
* Support overriding RPCWatchdog termination behavior on Android and other platforms 6216
* Set `NDArray::Container.shape_` in NDArray::FromDLPack (5301)
* Enable x86 cpu cache flush 5914

Quantization
* Conv2D type checking for kernel per-channel scales. 4732
* Add missing nullptr check 4773
* Doc fix on convolution and dequantize 4799
* Conv2D with dilation support. 4796
* Making `scale`/`zero_points` as expr instead of attrs. 4611
* Make calibration faster and more memory usage friendly 4589
* Doc fix on convolution and dequantize 4799
* Conv2D with dilation support. 4796
* Optimize lowering for requantize and FixedPointMultiply. 4798
* More doc fix on quantize and convolution 4874
* Add support for per channel weight scale in dense op 4880
* Add support for quantized models via QNN 4977 5013
* Support 4D padding. 5036
* [Requantize] Cleanup and Optimize Lowering (5286)
* [Topi, ARM] Disbale Winograd for quantized tensors. (5363)
* Adding support for TFLite QnnSubtract operator. (5230)
* Remove developer facing api from frontend exports. (5375)
* Add Quantize/Dequantize Partitioning 5940
* Add support for quantized models via QNN 5016
* Quanitze operation expanded to take const argument 6127
* FP32 and Quantized Object Detection Model 5479
* Support CallNode inputs in qnn.concatenate 5360
* QNN support for TFLite 2.1.0 quantized models 5848

TE
* Tighten split's extent 4931
* Set split node's range to minimum of ext and split factor or split np… 5044
* Support mixing normal and cross-thread reduction (5193)
* Inline -> `te/schedule/operation_inline.h` (5386)
* Create loops according to storage scope and thread hierarchies (5190)
* Fix import in dump pass ir (5327)
* Scalar support for te.extern 6079

TIR
* IR readability enhancement (4501)
* Introduce tir::PrimFunc 5070
* Introduce PrimFuncPass. 5139
* [TIR] Enhance Substitute, python bindings for Substitute/PostOrderVisit (5400)
* [TIR] Remove ProducerConsumer and `AllocateNode::new_expr` (5333)
* [TRANSFORM] Enable CopyOnWrite for TIR passes. (5309)
* [REFACTOR] Migrate LowerTVMBuiltin, InferFragment, LowerThreadAllreduce, ThreadSync to Pass Manager (5213)
* [REFACTOR] Remove te::Tensor dependencies from TIR passes. (5372)
* [TIR] Refactor MakePackedAPI to target dependent stage. (5326)
* [REFACTOR] tvm.hybrid -> te.hybrid (5223)
* [REFACTOR] Migrate most of low-level build to use the Pass Manager. (5225)
* [REFACTOR] Migrate low-level passes in tvm.lower to the Pass Manager (5364)
* [TIR] Migrate VTA TIR passes to the new pass manager. (5397)
* [REFACTOR] Migrate all low-level passes to the Pass Manager. (5233)
* [REFACTOR] Introduce ExprDeepEqual, Remove IRDeepCompare (5206)
* [REFACTOR] RewriteForTensorCore -> te/schedule (5379)
* [REFACTOR] Remove `ir_pass` in favor of analysis/transform. (5415)
* text format printer considering future parsing use 5483
* Remove buffer params from pass config. 5652
* std::string -> String Migration in TIR nodes 5596
* Remove `CallNode.call_type` in favor of attribute. 5937
* Remove legacy HoistIfThenElse 5944
* Improve Let/LetStmt support. 5949
* Refine side effect analysis. 5954
* `Provide->ProducerStore`, `Realize->ProducerRealize`. 5750
* Migrate the tvm/tir/expr.h to constructor 5773
* Migrate tir/stmt.h to use constructor. 5778
* Cleanup unused classes 5789
* Add tir prefix to type keys 5802
* Enhance VerifyGPUCode 6194
* Enforce buffer pointer var type to be consistent with dtype. 6317
* Create a StringImm reference type 4806
* Add init member to ReduceNode 6138
* Add dump and print for debugging (NFC) 5207
* Streamline Function Attr interface. 5045
* `alpha_equal` to `structural_equal` 5161
* Remove AttrsEqual and AttrsHash related code 5169
* [NODE] General serialzation of leaf objects into bytes. (5299)
* [POC] Initial stab at `std::string->String` upgrade (5438)
* [TIR] Make `lower_warp_memory` support `extent(threadIdx.x) < warp_size` (5307)
* [PASS] dtype rewrite for indexing variables (5092)
* [PYTHON] Enhance `with_attr` API, cleanup MakeAPILegacy in testcases (5335)
* [PYTHON] Make IntImm more like an integer (5232)
* [IR] Move to runtime::String (5276)
* [IR] kExternalSymbol -> kGlobalSymbol (5211)
* [IR] Remove PrimExpr from String (5311)
* IRModule is updated with String 5523
* IR is updated with String 5547
* Streamline ir/op Registry 5609
* Migrate IRModule ObjectRef to not-null 5654
* Migrate BuildConfig to PassContext. 5668
* relay.op.Op -> tvm.ir.Op 5705
* Separate ArgTypeCode from DLDataTypeCode 5730
* Remove legacy `compute_expr.h` 5738
* Call::Halide => ProducerLoad, DSL/TIR decouple. 5743
* `Provide->ProducerStore`, `Realize->ProducerRealize`. 5750
* Migrate the tvm/tir/expr.h to constructor 5773
* Migrate tir/stmt.h to use constructor. 5778
* Migrate all Object construction to constructor. 5784
* Cleanup unused classes 5789
* Finish `std::string->String` updates 5793
* Add tir prefix to type keys 5802
* Change Call.name to Call.op(RelayExpr) 5863
* Range/IntSet API style consistency. 5953
* Separate ArgTypeCode from DLDataTypeCode 5730
* Migrate all Object construction to constructor. 5784
* Finish `std::string->String` updates 5793
* Unify StrMapNode and MapNode 5687

Performance Improvements
* Int8 GEMM performance enhancement using Cublas (4550)
* Speedup TSIM with multi-threading (4491)
* Support cudnn softmax (5214)
* Add cuDNN grouped convolution support (5319)
* Winograd support for Conv3D (5186)
* Improve `get_valid_count` and nms performance for CUDA (5339)
* Optimizations of `global_ave_pool` for NHWC layout (5450)
* Optimization of Conv2d Winograd algorithm on Tensor 5485
* Some performance improvement to VM 5901
* Optimize x86 `conv3d_ndhwc` using data packing approach. 4866
* Improve NHWC depthwise convolution for AArch64 6095
* Improve quantized convolution performance for armv8 architectures 5754

Documentation
* Adding benchmark log format doc (4366)
* Add Ninja build system to installation docs (4554)
* Doc/comment fixes (4452, 4463, 4469, 4493, 4397, 4580, 4585, 4591)
* Fix doc after moving to unified IR 4835
* Introduction to module serialization 4564
* ConvertLayout - Call RemoveUnunsedFunctions. 4834
* Fix bugs that override `n_trials` 4842
* Update the vm doc 4868
* Refine the example description of `max/min/sum/tag_scope` 4974
* Fix vta tutorial 4809
* Introduce how to add hardware backend to FAQ 4898
* Update API docs to reflect the status after the refactor. 4907
* Fix sphinx warnings 4917
* Fix Sphinx Warnings (RST indent, cross-ref, and image scale) 4920
* Fix Sphinx Warning: the target found for cross-reference 4925
* Sphinx -- Introduce alias detection. 4954
* Fix Warnings from 4942 4959
* Fix sphinx precheck 4967
* Move `git_howto` to rst, add Stage documents to te 5055
* Add doc for Relay op strategy 5078
* Update relay docs 5112
* Include a tarball of docs, add a security faq 5119
* Cleanup docs before rebuild 5127
* Minimize necessary doc change 5129
* Various sphinx related fix. 5168
* Point docs to the ASF site. 5178
* Use https link 5183
* Reduce artifcats generated by sphinx gallery 5208
* Refine the example description of `max/min/sum/tag_scope` 4974
* Description updated for pooling attributes 5091
* [DOCS] Migrate some markdowns to rst, fix sphinx3 warnings (5416)
* [DOCS] Misc docs improvements (5222)
* [DOCS] Bring relay docs to the top-level flat view (5343)
* [DOCS] Reduce artifcats generated by sphinx gallery (5208)
* [DOCS] Use https link (5183)
* [DOCSTRING]missing function parameters updated (5228)
* [DOCS] Migrate HLS documents from md to rst (5419)
* [Tutorial, QNN] Add tutorial for loading quantized PyTorch model (5321)
* [Docs] VTA install doc migration from md to rst (5442)
* [Docs] compiler version in docs (5281)
* Remove legacy `compute_expr.h` 5738
* `TVM_REGISTER_API` -> `TVM_REGISTER_GLOBAL` 4768

Bug Fixes
* Add bfloat16 typeflag support (4525)
* MSVC / Windows fixes (4455, 4569)
* Fix Makefile for `howto_deploy` (4457)
* Fix GCC 4.8 compact (4461)
* Fix search path to build `libtvm_topi.so` (4467)
* Fix for `conv2d_transpose` CUDA compilation (4472)
* Fix for LLVM 10.0 codegen (4480, 4515)
* Fix alter op layout when calling global var (4454)
* Fix `float2half_rn` support for cuda compute capabilities < 53 (4489)
* Fix compile errors for OpenCL backends (4492)
* Fix serialization precision loss (4503)
* Fix hybrid script to support array of tensors (4494)
* Fix annotation for multiply op (4458)
* Fix Dockerfile for linter CI (4506)
* Fix TF resize for dynamic size models (4510)
* Fix `bias_add` gradient (4516)
* Fix tanH unit test function call (4517)
* Fix extra reshape parameter for ONNX (4524)
* Fix crash caused by empty TOPI config (4520)
* Fix ONNX shape op type to use int64 (4528)
* Fix crash in TSIM virtual memory driver (4527)
* Replace deprecated python library in setup script (4533)
* Fix NMS `max_output_size` loop (4541)
* Fix style in IR mutator and IR visitor (4561)
* Fix compiler warning (4559)
* Fix to get end to end inference on Chisel VTA (4574)
* Fix LLVM build by adding missing intrinsics headers (4575)
* Fix context creation in quantization (4582)
* Fix NDArray SaveDLTensor signature (4586)
* Fix dense pack schedule for x86 (4539)
* Fix for broadcast tensor of scalar type (4577)
* Datatype refactor (4513, 4560)
* Add const qualifiers for NDArray container (4590)
* Fix TF <= 1.12 compatibility (4593)
* Fix for graph debug runtime (4598)
* Disable copy constructor for external codegen (4597)
* Make ADT tag signed (4605)
* Added declare of aluBits for TensorAlu 4624
* Get around limitation of g++-4.8 4626
* Bugfix StmtMutator IfThenElse 4609
* Remove unecessary rdynamic 4613
* Resolve constexpr related link error in debug mode 4641
* Asymmetric padding 4511
* Reduce data size of asymmetric padding testcase 4658
* Fix Base64OutStream portability issue 4668
* Fix `topi.nn.global_pool` layout="NHWC" 4656
* Also package core.rly 4679
* fskip of EliminateCommonSubexpr cannot always return false 4620
* Fix Python syntax error in `start_rpc_server_to_tracker.py` 4682
* os.path --> osp to match the import 4681
* GitHub actions/checkoutv1 --> v2 4680
* Fix Python syntax error AGAIN in `start_rpc_server_to_tracker.py` 4685
* Use ==/!= to compare str, bytes, and int literals 4686
* Rename `start_rpc_server_to_tracker.py` to `start_rpc_server_to_tracker.sh` 4689
* GitHub Action lint Python code for syntax errors 4688
* Generate blob use LLVM directly 4657
* Reduce input size to fix oom 4653
* Fix RemoveUnusedFunctions pass 4700
* Link the math library by default 4713
* Update mainline version to 0.7.dev0 4720
* Add SizeVar representing non-neg valued variable in a tensor shape 4684
* Fix the compile problem of `cpp_rpc` 4725
* JSON upgrader to upgrade serialized json. 4730
* Fallback schedule for Int8 depthwise. 4733
* Fix dense x86 schedule 4728
* Fix demo dockerfile build failed 4744
* Improve CUDA vectorizer 4736
* Add .asf.yaml for github info 4761
* Fix padding in pooling op 4738
* Remove `run_infer_type` duplicates 4766
* pooling.cc improvements 4767
* Export `builtin_fp16` on Windows 4731
* Fix Tensorflow conv3d pad bug, add non-cubic data and kernel tests 4772
* Bump prebuilt-image version in demo dockerfile 4770
* Update `tune_simple_template.py` 4778
* Explicitly link to cublasLt if it exists 4776
* Fix hasattr by extracting Python error type from Windows error message 4780
* Replace os.path.exists with try...except...else 4784
* Make sure to visit the arguments of inlined functions 4783
* Parse additional exception strings 4785
* Fix 4670: add bias for fc layer 4801
* Change color channel from BGR to RGB for darknet preprocessing 4794
* Fix -Wextra 4804
* Fix vta tutorial 4809
* Minor bug fixes in AutoTVM for QNN graphs 4797
* Fixed subprocess creation under windows 4820
* Improve tol to resolve flaky case 4836
* Fixed process termination routine in windows 4844
* `test_cuddn` flaky 4846
* Mxnet parser for Qnn dialect 4714
* Enhance `cc.cross_compiler` 4817
* Fixed crash caused by reversing bitwise operations 4852
* Reverse some changes made for `intel_graphics/conv2d.py` in PR 4849 4853
* const auto p -> const auto& p 4861
* Fix onnx import bugs 4750
* Explicit llvm::StringRef to std::string conversion 4859
* Update the runtime PackedFunc for module 4871
* Improve antlr import error message 4888
* Fix `alpha_equal` bug for attribute check 4897
* Fix issues in cuda codegen 4876
* Fixed: Bitwise ops on floats causing wrong code generation and crashes. 4892
* Fix `tvm.target.generic_func` runtime detection 4910
* `topi/tests/python/test_topi_sort.py::test_argsort` 4891
* Use opencv reisze method for preprocessing of image in darknet 4883
* Fix build breaks with StringRef changes 4923
* Remove unnecessary spliting in the cached chunk 4935
* Fixing an Infinite Loop case in UnmatchedChecker. 4881
* Remove SGX toolchain installation from CI Dockerfile 4948
* Fix tedd tutorial after strategy change 4947
* Allow customize MKLDNN library location 4814
* Added CopyFromBytes and CopyToBytes convenience methods to NDArray. Fixed typos. 4970
* Fix gcn tutorial failure 4994
* Fix stride default value None in torch.nn.functional.avg_pool 4984
* Fix ROCm strategy for winograd conv selection 5001
* Fix `get_valid_count` flaky test for cuda 4901
* Change Scala Linter scalafmt => scalastyle 4998
* Kill from tvm import te 5007
* Chisel fixes and de10nano support 4986
* Fix gpu not found when running TVM docker 4975
* Fixes for pylint==2.4.4 4849
* Fix unordered dictionary problem for python version under 3.6 4982
* Fix gcn tutorial failure 4994
* Fix stride default value None in `torch.nn.functional.avg_pool` 4984
* Fix ROCm strategy for winograd conv selection 5001
* Early checking added and new test cases added for schedule fuse 5010
* Fixed div by zero core dump. Fixed rounding intrinsics on int crash 5026
* Test case modified for int type 5012
* Bug Fix for ARM CPUs. Lower strict assumption. 5063
* Triage the testcases to fit the the new namespaces 5071
* Add colors to `compute_at` edges and thread/block indices. 5111
* Temporary fix to the stack overflow issue in autotvm task extraction 5019
* Fix compilation of If-Elses 5040
* Fix CompilerAttrs 5109
* Fix the existing test cases before refactoring. 5122
* Fixed bug where shifting by out-of-bounds value results in no compute code being emitted. 5115
* Fix for issue 4831. The `data_min_idx` and `data_max_idx` were flipped. 5136
* Duplicate likely nodes added when loop axis split unevenly 5084
* Fix incorrect name of calibration mode 5150
* Remove contrib spatial pack schedule of depthwise convolution 5148
* Fix annotate pass static variable 5023
* Fixed ConvTranspose2D parsing 5157
* Nullptr check 5176
* rocm: fix miopen convolutions 5179
* rocm: fix `dense_rocblas` in strategy, topi 5191
* Fix CRT static test bug (5293)
* Fix perf regression of tir refactor (5258)
* Bugfix in tensorflow `space_to_batch_nd` (5175)
* Compilation warnings fixed for 32bit and 64bit compilation (5349)
* Fix hang in MergeCompilerRegions (5227)
* Fixes to MergeCompilerRegions (5195)
* Fix generation of LLVM intrinsics (5282)
* Fix setting up hints for getaddrinfo (2872)
* Add ConstantNode to IsAtomic (5457)
* Fix String SEqual (5275)
* Fix fuse over functions that are handled by external codegen (5365)
* Fix memory leak when accessing NDArray (5413)
* Remove the duplicate PrintIR pass in Relay (5403)
* Fix `lower_warp_memory` (5247)
* Fix `lower_warp_memory` when there are >1 warp buffers (5368)
* Fix intel conv2d auto tune (5200)
* Fix FuseBatchNorm output cast error if `need_cast` is True 4894
* Fix an assertion exposed by loop vectorizer 4916
* Fix error message 4945
* Fix for recursive let 5757
* Fix Calibration Pass to Support Modules with Multiple Functions 5768
* Fix what looks like bizzare copy-paste issue 6010
* Fix bug in `transpose_shape_func` 6180
* Fix bugs in CUDA codegen (5209)
* Don’t remove() TemporaryFile in del. (5414)
* Fix `test_ir_type`. (5390)
* Fix multiple identical inputs bug (5389)
* Add cuda target check to dense tensorcore schedule. (5376)
* T2 test fixups (5391)
* Fix miopen padding (5433)
* Misc fixes for ROCm (5431)
* Fix copy constructor (5237)
* Corrected TVM autotuning on GPU (5432)
* Fix vector load (5226)
* Minor bugfix in `message_passing.cc` (5254)
* Fix a bug when vectorized load&store was involved for… (5428)
* Fix to skip node not in graph. (5238)
* Fix 5388 [VULKAN] vkBuffer released before memory copy command se… (5418)
* Fix a minor error in `device_annotation` (5291)
* Fix scalar’s ndim is 0 (5344)
* Fix the runtime raise error 5586
* Fixed bug in attribute parsing for pool layers. 5582
* AutoTVM incorrect measurement 5511
* fix a min/max simplify bug 5761
* Rename `tvm_dso_op` to `libtvm_dso_op` 5714
* Fix generating types like float44 and float88 5722
* Avoid downloading when `TOPHUB_LOCATION` is NONE 5720
* codegen llvm: move nvptx-specific intrinsic handling into `codegen_nvptx` 5726
* ROCm warp shuffles and reductions 5727
* fix small bug about `dense_grad` 5695
* Clarify downstream consistency of TVMArgTypeCode 5742
* Fix gelu in PyTorch frontend, tighten numerical checks 5763
* Make batch matrix multiplication on GPU tunable 5752
* update vulkan build rule 5777
* aten::norm support added 5776
* Edit onnx parser to infer values in post order 5755
* Support symbolic inputs of Fill 5762
* support `aten::type_as` in the pytorch frontend 5787
* Temporary disable fp16 `type_as` test for PyTorch Frontend 5799
* Add config switch for nn.dense layer type. 5801
* Move cpu-only frontend tests to a CPU stage 5807
* Pin hand landmark network to version 0.7.4. 5813
* Limit number of threads in all jobs 5815
* Error msg update 5818
* fix relay.build to not change the module argument in place 5822
* Fix InferType when module contains Prelude 5797
* Add a combine `batch_matmul` pass 5791
* RepeatVector, Conv3DTranspose op support added 5833
* Fix converting serialized quantized models 5839
* ffi (Object): make class dict visible in instances 5843
* Additional canonicalization added for AddNode 5846
* Suppress the warning messages when compile engine selects impls 5821
* fix 5849 5851
* Introduce POD-C Compliant tvm::Map 5740
* Add bfloat16 5601
* Add Python Classes for all Attrs 5853
* Fix map assign issue in CI test 5854
* Introduce Target Id Registry 5838
* Update `has_dtype/has_shape` to pattern lang doc 5847
* Add `nn.batch_flatten` as quantizable. 5805
* Fail early before running invalid dynamic graphs 5856
* Improve type handling in PyTorch frontend 5834
* HotFix the python intrin rule 5895
* add a few gradients 5899
* Add Binary Intrinsic ops to TIR Ops in C++ 5900
* Allow implicit conversion in TVM FFI to tvm::Bool 5907
* PyTorch frontend: fix handling of duplicate use of a model weight 5897
* Don’t multiply by constant 1 uselessly in dense 5911
* Support any index matching for TupleGetItem 5909
* Add MicroTVM tutorial using the STM32F746 discovery board 5655
* Fix serialization of inf float value 5912
* Fix CPU Thread Binding for Multiple Sockets 5918
* CUDA device API & VerifyGPUCode pass update 5898
* Update install.rst 5858
* Two small fixes to AMDCPU codegen for LLVM 10+ and ROCm 3.5+ 5920
* Add LegalizeInvalidAttach to legalize the `compute_at` location after split or fuse 591
* Don’t rewrite expressions used outside of the pattern 5930
* Add TupleGetItem to CSE 5931
* Various update for CoreML codegen 5934
* Update date in the NOTICE 5943
* Raise right error in tensorflow split op 5951
* Add rm xla attributes in tf docs 5950
* Fix OpenCL `get_valid_counts` errors due to intrinsic `atomic_add` 5857
* Amendments for gradients 5941
* Fix the meaning of `conv{1,2}d_transpose` `output_padding` parameter. 5758
* Make first order gradient graphs more efficient 5959
* Raise an exception when extern function does not return Stmt 5964
* Improve docker/bash.sh to handle git worktrees 5970
* Install DNNL (OneDNN) to CI Environment 5936
* Add Dynamic reshape to a dynamic namespace and add DynamicToStatic Pass 5826
* Add meshgrid op in Relay, TOPI, Pytorch frontend 5961
* Print right number of parentheses for LoadNode 5965
* Migrate data structure of TargetNode 5960
* Remove redundant function CreateBufferVecPtr 5982
* Fix string argument mismatch in GraphRuntimeCodegen 5933
* VectorType::get with two parameters is deprecated in LLVM 11+ 5984
* Fix Compilation Error in CRT 5713
* Fix runtime::String backward compatibility in JSON 5725
* Allow RPCWrappedFunc to rewrite runtime::String as std::string 5796
* Fix reshape 5739
* Fix building with LLVM-10 on macOS 5859
* Add cuda 11 to `contrib.nvcc.find_libdevice_path()` 5902
* Fix sequential cpp test 5745
* Infer types in MergeComposite 5766
* Fix recursive let for well formed check 5780
* Recover global state after `test_util.py` 5824
* Fix bug in rpc ring buffer shrink 5516
* Fix remote device sync 5538
* Fix bug in rpc ring buffer shrink (5516) 5537
* RPC Server error fix on Pynq FPGA 5607
* Fix FloorMod Simplifier 5509
* Fix Python debugger segfaults with TVM built with LLVM 5685
* Fix Compilation Error in CRT 5713
* Fix runtime::String backward compatibility in JSON 5725
* Allow RPCWrappedFunc to rewrite runtime::String as std::string 5796
* Fix reshape 5739
* Make "none" DataType explicit 5491
* Change "scalar" and "stack" in IDL from "inrout" to "in" 5487
* Link necessary libraries when building runtime for Android 5496
* Fixes for wasm32 target 5489
* Reset target and wait for runtime initialization on connect. 5499
* Bump tophub rocm version 5504
* Improve commentary for RingBuffer 5518
* Add unit tests for ONNX PRelu and fix importer to pass them. 5521
* LRN only supports 4D tensors, remove it from `alter_op_layout` 5520
* Fix an issue with ONNX Upsample 5530
* Cache PrimExpr instead of raw pointers in bound analyzer 5533
* fix a few bugs with shape inference and types in the ONNX importer 5534
* Add Onnx Pad v11 5539
* Changes to `cpp_rpc` to make it work on Android (+ Hexagon offloading) 5535
* Fix to reduce RAM size during loading model 5507
* Fix MakeLoopNest for warp memory 5382
* Load platform specific lib for tvmdsoop instead of the hard-coded tvm_dso_op.so 5542
* Add tests for running micro on native arm hardware 5546
* Apparently, ONNX Conv with no 'pads' defaults to zero padding 5548
* clang-format the h,cc,m files. 5557
* Fix conv2d alter op for arm cpu 5532
* Fix topi test for non tensorcore CI. 5563
* Add clang-format and nodejs to ci-lint 5567
* Enable clang-format. 5572
* Allow `ubuntu_install_darknet.sh` to work in both 18.04 and 16.04 5574
* Add a quantized conv2 unit test for the tflite front-end 5558
* Fix JSON graph dumping. 5591
* Warp level reduction support for CUDA 5498
* One more fix for concurrency count 5589
* Improve robustness of the docs build 5583
* Phase out WebGL 5570
* Fix vulkansdk in the ci-gpu and upgrade to 1.2.135 5566
* Update ci-cpu to bionic 5554
* Overestimate binary size for microTVM compiled binaries. 5590
* Fix bug and re-enable RPC execution test 5436
* Add ostream formatters for TargetPtr/TargetVal. 5592
* Fix cross thread reduction 5551
* Fix TVMArray layout on device 5599
* Add debug mode to tempdir() 5581
* Represent alignment information in LLVM IR 5598
* Fix codegen for warp shuffle intrinsics 5606
* Fix Topological Order calculation for DFPattern Language 5612
* Global MaxPool3d and AvgPool3d support 5098
* Fix build error of iOS RPC 5621
* isn't a CallNode sometimes 5623
* Introduce config to PassContext. 5631
* CMAKE fix 5630
* Label Pattern Partitions 5627
* Extend AttrPattern to support CallNode and FunctionNode attributes 5637
* Increase bss section size. 5660
* Add buffer name when creating tensor bindings 5670
* µtvm debug improvements 5648
* enable `amd_apu` device on vulkan target 5659
* Support TupleWrapper as direct ancestor of control flow ops 5639
* add tvm.micro pydoc to sphinx 5661
* Add a regression testcase for 5674 5677
* Fix C++ RPC build problem on Linux 5671
* Add a check Callback to the Pattern Paritioner 5646
* Call previous excepthook in `tvm_excepthook`. 5675
* Fix the shift column for `scale_shift_nchw` and `scale_shift_nhwc` in C topi 5679
* Support more dtypes for TVMDSOOp 5694
* In `memory_plan`, check if value is not None, instead of just checking value as boolean. 5700
* Fix flaky `test_topi_pooling.py:test_adaptive_pool` 5736
* Fix the values for `test_fmod` since it fails way too often otherwise 5723
* fix small bug about `dense_grad` 5695
* Fix sequential cpp test 5745
* Add Scatter to Topi/Relay/ONNX via hybrid script 5619
* Clean WASM environment before build 5759
* Fix gelu in PyTorch frontend, tighten numerical checks 5763
* fix 5686: remove a overstrict assert in MakeAllreduce (5686) 5785
* Improve Pattern Language Docs 5676
* Add missing expr visitor for any 6082
* Remove the tvm web from version update 6122
* Clear relay cache after every build & Clear warning message cache after autotvm task extraction 6131
* avoid unexpected throw in AttrInitEntry 6128
* Verify that tensor reshape is valid. 6215
* Use LocalRunner by default in the tutorial tune_relay_cuda.py 6001
* Undefined names: import os for line 324 & import re for line 308 6003
* GitHub Actions upgrade to actions/setup-pythonv2 6002
* Only pass pythonpath for ci images 6005
* Auto-convert shuffle with single index to “extract element” 6006
* Cache object refs in loop partitioner instead of object pointers 6004
* Fix `test_arith_solve_linear_inequality.py::test_multi_equal` 6014
* MXNet frontend support for AMP cast op 5976
* Demo showing how to run a pruned model. 5975
* Move compiler related registry items to `vta/build_module.py` 6012
* Pin keras version 6032
* Fix in `arm_cpu/conv2d_alter_op` for NHWC quantized 6027
* Add creation of Hexagon device in RPC client 6035
* Terminate basic block after “ret” instruction 6036
* µTVM CRT modifications for on-device RPC server 5921
* Create TBAA information based on the unrelying buffer type 6046
* Add support for tflite `arg_min` and `arg_max` 5992
* Fix `fully_connected` converter when batch size is not 1 6038
* Fix a primitive check error 5991
* Refactor to expose MakeOp functions to C++ 6047
* Fix `conv2_gemm` after target structure update 6037
* Remove use of designated initializers from `hexagon_module.cc` 6055
* Build crttest and cpptest separately. 6057
* Fix pytorch frontend prim::Constant issue 6051
* update frontend tutorials to new model based runtime interface 6063
* Remove unnecessary std::cout 6072
* Fix error message in Buffer::vstore, NFC 6056
* Fix FSIM Compile Error. 6070
* Improve vector simplification for float operands 6043
* Fix LocalBuilder on macOS with python 3.8. 6083
* Add missing test for fast erf 6058
* Fixed point multiplication improvements for AArch64 5980
* Fix code generation bugs for C/CUDA & Improve VerifyGPUCode pass 6041
* Delete declaration of unused `op_node` 6102
* Load configs even it has no entity 6100
* Update SGX example Cargo.toml 6067
* Add default value for option `USE_DNNL_CODEGEN` in the cmake 6099
* Update installation doc with minor improvements 6104
* lint: add opencl .cl file type 6092
* Clean up conversions between TVM and Rust functions 6114
* Improve reduction schedule on arm CPUs 6110
* Register Shape Func for Some Operators to Handle Dynamic Shapes 5955
* Fix variable name conflict with OpenCL keyword 6048
* Some rust cleanups 6116
* Option to specify alternate directory to output build to 6016
* Add `get_num_inputs` to GraphRuntime 6118
* TFLite quantized conv test 6084
* Fix autotvm on the `conv2d_nchw_winograd.mali` operator 6130
* add attr option mfloat-abi for arm32 6123
* Fix CUDA Library Tuning 6132
* Add missing RPC sources after refactor 6113
* Correct `runtime.load_module` 6161
* Improve error messages in graph tuner, graph runtime, and module loader. 6148
* Fix some shape mismatches between TF and Relay 6166
* Improve doc string 6176
* Fix incorrect function signature in header 6172
* Fix alignment of note 6181
* Implemented PADV2 Operator for TFLite and added support for constant values in PAD. 6167
* Unary ops support added in frontend 6196
* Change the meaning of `conv3d_transpose` `output_padding` to match `conv{1,2}d_transpose` 6065
* Fix compile warnings. 6204
* Fix -mfloat-abi=soft compilation for ARM with OpenCL target 6150
* Match pytorch 1.6 googlenet pretrained model (6201) 6212
* Mod operator, bug fix 6160
* RESHAPE with dynamic shape arg in TFLite frontend 6208
* Fix compilation error with cuda 11 6213
* Fix `port_end` wrong default value 9199 to 9099 for keeping same with source code 6220
* Std op without specified dimensions support 6226
* fix crt building and running error 6231
* Implemented `ONE_HOT` Operator for TFLite. 6223)
* Avoid unexpected throw in AttrInitEntry 6128
* Added casting to hybrid script doc and fixed pass infra doc 6174
* Fix compile warnings. 6204
* Fix -mfloat-abi=soft compilation for ARM with OpenCL target 6150
* Mod operator, bug fix 6160
* Fix compilation error with cuda 11 6213
* Fix `port_end` wrong default value 9199 to 9099 for keeping same with source code 6220
* Std op without specified dimensions support 6226
* Verify that tensor reshape is valid. 6215
* Fix crt building and running error 6231
* Fix `conv2d_transpose` output padding 6236
* Fix cuda half math function is undefined: hpow, htanh 6225
* Fix division range estimation error in simplifier 6244
* Fix newer GCC compiler warnings. 6257
* Support `_contrib_SyncBatchNorm` 6245
* Fix reduction 6250
* Add apt repository for clang-11 and llvm-11 6256
* Update tutorial to new TARGET as `micro_dev` is no more 6262
* Fix clang-format 6264
* Trivial fix, up the rodata section for the discovery board to 512 bytes. 6259
* Fix cuda half math function is undefined: hpow, htanh 6253
* Add dilation in x86 NCHWc depthwise conv support 6267
* Decrease test times by introducing testing model 6235
* Add support for parsing the any dimension. 6277
* Improve error messages for memory verifier and gpu memory verifier 6281
* Reflect Compile-Time CMake Options into libtvm.so 6280
* Add cmake options into libinfo 6286
* Update slice to infer attributes when not graph inputs 6276
* Use rpc.LocalSession for simple tests 6294
* Fix random fail 6312
* Fix resize test 6298
* Fix cython FFI compact with np.int64 6321
* Fix relay vm optimize 6322
* Changed TVMCTVMContext to TVMContext 6306
* Make able to compile with MSVC 6341
* ROCm changed name of library and removed the old one in ROCm 3.7 release. 6345
* Compatible for ROCm before 3.7 6359
* Use clear name that is separate from ASF brand for cache 6360
* Fix `Dockerfile.demo_android` 6361
* Fx sparse dense schedule on cuda 5803
* Fix strategy for sparse dense cuda 5782
* Fix x86 conv2d template when tuning with unpacked layout 5938
* Fix the filter width parameter in `depthwise_conv2d` 6081
* Fix reshape usage in ARM schedule 5732
* Missing header 4865
* Fix `conv2d_transpose` output padding 6236
* Simplify reduce expression in te.gradient 6611

API Changes
* `tvm.module` -> `tvm.runtime.module`
* `tvm.module.load` -> `tvm.runtime.load_module`
* `tvm.module.enabled` -> `tvm.runtime.enabled`
* `tvm.module.system_lib` -> `tvm.runtime.system_lib`
* `tvm.relay.Module` -> `tvm.IRModule`
* `tvm.create_schedule` -> `tvm.te.create_schedule`
* `tvm.placeholder` -> `tvm.te.placeholder`
* `tvm.compute` -> `tvm.te.compute`

Deprecation
* Deprecate NNVM (4535, 4562, 4565, 4571)
* Deprecate FreeStmt 5890
* Remove legacy `compute_expr.h` 5738
* Deprecate OpenGL 5711, 5712

0.6

Relay in Production
Relay is a functional, differentiable programming language designed to be an expressive intermediate representation for machine learning systems. Relay supports algebraic data types, closures, control flow, and recursion, allowing it to directly represent more complex models than computation graph-based IRs (e.g., NNVM) can. In TVM v0.6, Relay is in stable phase and is ready for production.

* Algebraic Data Types (ADT) support (2442, 2575). ADT provides an expressive, efficient, and safe way to realize recursive computation (e.g., RNN). Refer to https://tvm.apache.org/docs/langref/relay_adt.html for more information.
* Pass manager for Relay (2546, 3226, 3234, 3191)
* Most frameworks have been supported in Relay, including ONNX, Keras, Tensorflow, Caffe2, CoreML, NNVMv1, MXNet (2246).
* Explicitly manifest memory and tensor allocations in Relay. (3560)

Relay Virtual Machine
The Relay Virtual Machine (Relay VM) is the new generation of runtime to strike a balance between performance and flexibility when deploying and executing Relay programs. Previously, the graph runtime is able to utilize the fully static nature of the input graphs to perform aggressive optimization such as fully static allocation, and optimal memory reuse. When we introduce models which make use of control-flow, recursion, dynamic shapes, dynamic allocation we must change how execution works.

Relay VM is now usable and is able to achieve decent performance for a various of models and targets.

* Design (2810 2915) and a first version of implementation (2889),
* Add VM runtime for Relay and compiler support (3120, 3121, 2889, 3139)
* Relay VM (pattern matching 3470, port to python 3391, serialization 3647)
* Relay VM Profiler (3727)
* Support execution on devices for Relay VM (3678)
* [Relay][VM] Add more passes to VMCompiler (4058)
* [relay][vm] Separate VM runtime with executable (4100)
* Port VM, VM compiler, and Object into Python (3391)
* VM: Add AllocTensor instruction and better instruction printer (3306)
* [Relay][VM][Interpreter] Enable first-class constructors in VM and interpreter via eta expansion. (4218)
* [Relay][VM] Clean up the VM and VM profiler code (4391)

Training
Relay is designed to natively support first-order and higher-order differentiation. The automatic differentiation infrastructure is now usable and a count of operators with gradient support are available in v0.6 release.

* Higher order reverse mode automatic differentiation that work with control flow (2496)
* Higher order continuation passing style (3456, 3485 )
* Relay gradient registration (clip 3509, `max_pool2d` and `avg_pool2d` 3601)
* Relay AD algorithm (3585)
* Relay Training - allow gradient to return a tuple (3600), numerical gradient check (3630)
* Improve AD for concatenate (3729)
* [Relay][Training] Add missing gradient check to gradient pass (4169)
* As a part of Relay's automatic differentiation system, we are adding primal gradients for Relay operators. Please refer to 2562 for tracking the progress.
* Gradient for Conv2d (3636)
* Add gradient operators (3857, 3894, 3901, 3915)
* Add gradient for log-softmax (4069)
* [Relay][Training] Add gradient for Crossentropy (3925)
* [Relay][Training] Add and fix gradients (4126)

Quantization

Low-bit inference is getting more and more popular as it benefits both the performance and storage usage. TVM now supports two types of quantization. 1. Automatic quantizaion takes floating-point precision model, does per-layer calibration and generates low-bit model. 2. TVM also imports pre-quantized model from Tensorflow and MXNet, a new dialect QNN is introduced to handle further lowering to normal operators.

* Automatic Quantization
- Low-bit automatic quantization supported. (2116). The workflow includes annotation, calibration and transformation.
- Refactor quantization codebase and fix model accuracy. (3543)
- KL-divergence-based per-layer calibration. (3538)
- Add option to select which convolution layers are quantized. (3173)
- [Relay][Quantize] Integrate data-aware calibration into quantization. (4295)
* Pre-quantized model support (QNN operators and legalize pass).
- Add a legalize pass to Relay (3672)
- Qnn Concatenate, quantize, dequantize and requantize operators (3819, 3730, 3745, 3531)
- QNNtoRelay & QNNLegalize Pass utility (3838, 3782)
- Requantize: Optimize lowering for some corner cases. (3864)
- New quantized operator support: conv2d, add, dense (3580, 3736, 3896, 3910)
- Do type checking for the input and kernel in the qnn conv2d (3904)
- Legalize and AlterOpLayout for Intel int8. (3961)
- Renaming tests to follow the Relay nomenclature. (3975)
- Fix padding changes due to 3739 (3989)
- Memorizing quantize node mapping to avoid duplicated simulated quantization (3233)
- Infrastructure to support pre-quantized models (QNN) (3971).
- [Relay][AlterOp] NHWC to NCHWc support for Pool, concatenate, sum. (4059)
- [TOPI][x86] Cascade lake support. (4123)
- [TOPI][x86] Legalize - Support int8xint8 convolution to use VNNI inst (4196)
- Qnn dequantize with min max using Mxnet flavor to support Mxnet prequantized models. (3945)
- Improve the lowering of Qnn Dense (4213)
- Adding support for dequantizing from int32 to float32. (4130)
- [QNN] Refactor fixed point multiplication in requantize (4073)
- [Relay][Quantize] Use fixed point mulplications (4160)
- Add support for quantized multiply to Relay (4141)
- Use legalize to handle NHWC layout for `arm_cpu` (3754)
- [QNN][Legalize] Specialize for Platforms w/o fast Int8 support (4307)
- [QNN] Use Int16 upcast in Fallback Conv2D. (4329)
- Retain input kernel scales in QNN dialect (4292)
- [QNN] Lowering for Depthwise Convolution. (4351)
- [QNN][TFLite] Parsing QNN Add op. Adding MobilenetV2. (4142)
- [QNN][TFLite] Parsing TFLite quantized models. (3900)
- Added tflite frontend support for quantized mean. (4339)
- [Relay][Legalize] Legalize `conv2d_transpose` for NHWC (4399)

Accelerator and Microcontroller Support

TSIM is introduced to improve software and hardware integration and simulation accuracy. It integrates the hardware development process into the software stack. TSIM enables VTA to provide a more accurate performance feedback, i.e. clock cycles, compared to the traditional functional model of a hardware accelerator. Moreover, Chisel implementation for VTA is availale and it runs on top of TSIM.

There has been a proliferation of resource-constrained and embedded devices that do not have operating systems or a mature software stack. MicroTVM is intended to support TVM on such bare-metal devices.

* [TSIM] Enabling Cycle-Accurate Hardware Simulation for VTA (3010, 3206, 3242)
* Chisel implementation for VTA and runs on top of TSIM (3258, 3347)
* MicroTVM (3227)
* Relay Compilation + AutoTVM compatible operator libraries for VTA (3135)
* ChangeBatch pass for batched VTA compilation (3656, 3660)
* VTA fast simulator statistics (3481)
* TSIM improvements and fixes (3505)
* Chisel VTA enhancements and fixes (32bit support 3558, alu instruction generation 3592, coherence support 3593, separate types 3605, tensor issue/commit 3637, uop load request 3643, uop dma requests 3654)
* VTA Runtime refactor for non-shared memory FPGAs (3590)
* VTA HLS codebase refactor for Ultra96 (3496)
* VTA support for batched inference (3661)
* VTA bitstream compilation for Intel FPGA (3494)
* TSIM: Introduce Virtual Memory for TSIM Driver (3686)
* Parallel TSIM hardware compilation with macOS and debug support (3797)
* Chisel: scale dram base address in hardware instead of runtime (3772)
* Chisel: run all unittests by default (3766)
* Chisel: improved Data Gen, Added ALU Test (3743)
* Chisel dependencies for TSIM CI (3721)
* Chisel: Added Module Unit Test Infrastructure (3698)
* Add ISA BitPat generation (3891)
* de10-nano driver (3394)
* Extending Vision model coverage compilation for VTA (3740)
* Conv2d transpose (deconvolution) operator support (3777)
* Support TLPP in function simulator. (3555)
* [VTA][Chisel] TSIM VTA Source Refactor (4163)
* [VTA][TSIM] Serial GEMM Application Added (4082)

Rust Support
Rust language support in TVM includes two parts. 1. The frontend wraps the current C API and exposes a Rust programming model. 2. The backend serves as an alternative to C++ runtime. It privdes a standalone WASM module and security support, e.g., SGX.

* Rust frontend (2292).
* Unify types between bindings and pure Rust impl (2616)
* Rust: load syslib modules at compile time (3274)
* Rustify PackedFunc & Friends (2969)
* Rust DSO module (2976)

Operator Support
* A special operator `annotation.stop_fusion` to prevent it being fused with previous expressions (2624).
* `batch_matmul` supported (2561).
* `reverse_reshape` supported (2503).
* Faster-RCNN proposal operator for CUDA (2420).
* Vision operator for YOLO `yolo_reorg` (1941).
* `slice` operator for MXNet (2662).
* `arange` supported (2621).
* Vision operator `roi_align` (2618).
* `where` operator for MXNet (2647).
* Deformable conv2d (2908)
* Faster-RCNN Proposal OP (2725)
* ROI Pool operator (2811)
* Gluoncv SSD support on CPU (2353)
* shape, reverse, and sign op (2749, 2800, 2775)
* tile and repeat op (2720)
* logical operators (2743, 2453)
* stack op (2729)
* NCHWc upsampling (2806)
* clip and wrap mode support in take (2858)
* AlterLayout support for `intel_graphics` conv2d , depthwise conv2d (2729, 2806)
* Add foldr1 operator (2928)
* Add rsqrt operator (2949)
* Add clip and wrap mode support in take (2858)
* `Gather_nd` exposed to relay (2945)
* `bitserial_conv2d` move to autotvm template and updates (2819)
* Port x86 NCHWc to AutoTVM for Task Extraction (2664)
* Implement relay `nn.bias_add` compute in C++ (3027)
* Rename output tensors for better readability (3006)
* int8 dense on CUDA & Dense op quantization (2877)
* Bitserial dense operators for CPU (3051)
* Enhance upsample operator to adapt onnx opset v9 (2968)
* Add adaptive pooling operator (3085)
* Add all operator (3124)
* Add cblas `batch_matmul` (3210)
* Add packing for int8 1x1 convolution and support the int8 group convolution on X86 (2991)
* Add op size (3094)
* x86 TOPI (`roi_align` 3475, `conv2d_transpose` 3491)
* Intel INT8 (dilation in conv2d 3510, type checking 3516)
* Reinterpretation of tensor elements (3599)
* Spase-Dense for block-sparse multiplication (3566)
* Winograd matrix computation (3553)
* CUDA schedule for `pool_grad` (3622), `group_conv2d` (3663)
* Bitserial operations conv2d, dense and bitpack (3844)
* Improve numeric gradient check (3856)
* Resize rework ([3788](3788))
* Improve `conv2d_transpose` CUDA schedule template (3796)
* SpaceToDepth and MirrorPad Operators (3718)
* Add variance and layer norm op (3700)
* Add `sparse_transpose` for Square CSR matrices (3707)
* TOPI: Memoize winograd matrix (3687)
* New TOPI operators: `erf`, `logical_and`, `logical_or`, `logical_not`, `isnan` (3702, 3929, 3979)
* Improve `ceil_divide` in tile/split (3842)
* [Relay][Frontend][TF] Add tensor array ops (3798, 4309)
* [TF][Op] Op where (4045)
* [TOPI]Add op argwhere (3994)
* [Relay] `crossentropy_with_logits` and its gradient (4075)
* [Relay][Op] Enhance Upsample Operator to support float scales (4206)
* [Relay][Op] Add instance norm op (4004)

Frontend and User Interface
* Frontend darknet (2773)
* Support tf.gather (2935)
* Support tf.where (2936)
* Adding ADD operator to tflite frontend for compiling the MobileNetV2 (2919)
* Support SpaceToBatchND/BatchToSpaceND in Tensorflow frontend (2943)
* Simplify TF `get_output_names` (3025)
* TF Tile Round Sign Pow Exp Reverse (2960)
* Gluncv SSD support on the GPU (2784)
* Allow an op as loop var in Tensorflow (3056)
* Add `FULLY_CONNECTED` op into tflite frontend (3019)
* Add MXNet converter for RNN layer ops (3125)
* Add log op in tf frontend (3111)
* Add SoftPlus Sqrt in Tensorflow frontend (3187)
* Add onnx elemwise greater/less (3186)
* Add PlaceholderWithDefault (limited) implementation in TensorFlow (3184)
* Support `tf.math.reduce_prod` (3166)
* Better shape inference in TensorFlow Frontend (3176)
* Get list of unsupported ONNX operators (2995)
* Implement ONNX MaxPool-v8 and MaxPool-v10 (3114)
* Convert TFLite NCHW to NHWC (3141)
* Add Crop op converter (3241)
* TFLite frontend operator support: PAD, RESIZE, MUL, Reduce (min, max, mean, prod), LOGISTIC, elemwise operators (Sub, Divide, Power, Max, Min) (3310, 3370, 3304, 3421, 3313, 3357)
* Tensorflow frontend operator support: Abs, FloorDiv, GatherND, LeftShift, LogSoftmax, Max, Min, Mod, RightShift, ZerosLike, TruncateMod, Neg, ClipByValue, ResizeNearestNeighbor (3270, 3211, 3393)
* TFLite: Add `fused_activation_function` for ADD, SUB, MUL, DIV (3372)
* Support bidirectional RNN layer for MXNet (3397)
* TFLite operator support (pack 3521, split 3520 )
* Keras operator support (permute, softmax 3618)
* TF operator support (BatchMatMul 3634)
* TFLite frontend operator support: tile, transpose (3814, 3705)
* ONNX frontend operator support: PReLU for NNVM, Not, Sign, Equal (3813, 3836, 3760)
* Keras frontend operator support: Dot (3668)
* Add more cases to Keras `_convert_reshape` (3846)
* TensorFlow frontend operator support: OneHot, log1p, cos, sin (3781, 3614)
* Support BatchMatMul with input dimensions larger than 3 for TensorFlow (3732)
* ONNX new operator support: And, Tile, Erf (3878, 3941, 3988)
* MXNet new operator support: pad, conv1d, deconv1d (3739)
* TFLite new operator support: `batch_to_space_nd`, `space_to_batch_nd`, tanh, greater, relu (3850, 3996, 3963, 4022)
* TFLite: Support depthwise convolution multiplier greater than 1 (3922)
* Keras: Fix ReLU in Keras Converter missed the case (3917)
* Keras: frontend upsample and 1 channel conv2d fixes (3937)
* Tensorflow: Convert scalar Const into tvm.relay.const (3885)
* TensorFlow: Add support for SquaredDifference (3930)
* [relay][frontend] clean up tf frontend (3710)
* [Relay][Topi][TensorFlow][ONNX][Lang] Add support for Any op (4205)
* [Relay][Frontend][ONNX] Add support for op Where (4184)
* [Relay][TopHub] Add switch to disable TopHub download (4015)
* Add parser support for CAST tflite operator (4096)
* Add parses support for `zeros_like` tflite operator (4042)
* Add parser support for SUM tflite operator (4182)
* Add support for tf.assert (as no-op) and `tf.no_op` to TF Relay frontend. (4172)
* [Relay][Frontend][ONNX] New Operators and Opsets to Support BERT (4197)
* [Relay][Params] Add APIs for storing and retrieving parameters from individual functions. (4194)
* Add `build_create_shared_func` to tvm/contrib/cc.py (3840)
* Tensorflow saved model for NNVM ([2493](2493/) and Relay ([2586](2586/)).
* Introduced `HybridModule` (2477) so that normal TVM schedule can be compiled to hybrid target, run and dumped to Hybrid Script.
* Relay ][Frontend][Tensorflow] add operator `add_n` (4181)
* [Relay][Frontend][Tensorflow] StopGradient (4238)
* [Relay][Frontend][ONNX] Add support for broadcasting to Where and MatMul (4267)
* [TFLite] Support PRelu (4298)
* [Frontend][MxNet] support mxnet cond op (4311)
* Add support for `quant.mul` operator in tflite frontend (4283)
* [Relay][Frontend][ONNX] operator support: DepthToSpace, SpaceToDepth (4271)
* [Relay][Frontend][Tensorflow]Add `conv2d_transpose`. (4300)
* [Frontend]Add TensorFlow FloorMod (4308)

Runtime and Backend Support
* Make external library extend TVM's NDArray more easily (2613).
* Improvements for NNPACK integratation, includes ci test, winograd (2846, 2868, 2856, 2721)
* Improvements for OpenCL runtime (2741, 2737)
* GraphRuntime: Enable sharing parameters of a model among multiple threads (3384)
* Android runtime argsort support (3472)
* GraphRuntime enhancements (`set_input_zero_copy` 3416)
* A new minimal runtime implementation (~12kb .text on ARMv7/x86) for TVM.
* Add AVX512VNNI support for TVM (3388)
* Enable miopen Group Convolution (3987)
* Minimal runtime (~12kb .text on ARMv7/x86) for subset of TVM models (3567)
* [RUNTIME] Separate runtime related contrib into runtime/contrib (4207)
* [topi] add ARM v8.2 udot (uint8) support (3978)
* [codegen] Add multiple operands and function support when using fp16 compilation (4056)
* [TOPI] Added support for Mali Bifrost target (4047)
* [topi] enable fp16 sort for arm (4084)
* Add OpenOCD Low-Level Device (RISC-V Support) (3756)
* Add wave 32 bc for AMD ROCm backend (3984)
* [RUNTIME] Support C++ RPC (4281)
* [TOPI][OP] Support Faster-RCNN Proposal OP on CPU (4297)
* [TVM][RUNTIME] A minimum example to generate external library wrappers for DSOModule (4280)

Language and Architecture
* Support custom datatypes (2900)
* Add the acc16 intrinsic support (3081)
* Handle float16 constants & fix BatchNorm (3260)
* Structural hash - incorporate the var type into its hash (3267)
* Relay C++ Build Module (3082, 3144, 3174)
* Enable decorating python class to be a Relay Pass (3364)
* Make Partial Eval support interprocedural optimization and termination check. (3033)
* Introduce feature manager to Relay. (3236)
* Use Relay parser to define the Relay prelude (3043)
* Mechanism to detect incomplete expression match in Relay (3203)
* EQ/NE operators support for StringImm expressions (3283)
* Mechanism to detect incomplete expression match in Relay (3203)
* Introduce CanonicalizeCast pass to formally reduce memory overhead introduced by fused cast operations (3280)
* Support overloading comparison operations in Relay (3168)
* Mac count: provide a pass to calculate the number of multiply-accumulate operations in a network (2609).
- support for `conv_2d_transpose` (3469)
- [Relay][Pass] Count MAC for BatchMatMul (4157)
- Detect depthwise conv2d in `mac_count` pass (3083)
* Add Tuple pattern (3596)
* Text format support for ADTs and prelude (3863, 3939)
* Add new IR pass CombineParallelDense (3862)
* Add support for `EQ` op in the deduce bound and the loop partition (3775)
* Introduce base-class IRMutatorWithAnalyzer (3969)
* Define more standard global functions in the prelude of relay program, includes foldr1, hd, tl, nth, list update (2928, 2917, 2771, 2866)
* Add SkipVectorize pass (3222, 3228)
* [Relay][Pass] Add pass to remove unused functions in relay module (4334)

Symbolic shape enhancement
* Add shape function for symbolic shape. It enables certain cases for broadcast with symbolic shapes. (3606)
* [tvm][any] broadcast with values other than one (3967)
* Symbolic shape support (broadcast op 3389)
* Support reshape for dynamic shape in tf converter (4185)
* Runtime Shape Functions (4179)

Language and Architecture
* An optimization pass to eliminate expressions which have the same functionality and same inputs (2639).
* Refactor text printer to add stream-like API and FunctionType support (2605, 2882)
* Build a scaffold for structured error handling (2838). The new mechanism detects and rewrites error messages so that c++ and python stack trace are unified and not redundant. Guideslines and conventions for error handling is also discussed.
* Higher order reverse mode automatic differentiation that work with control flow (2496)
* Integer arithmetic analyzers, includes modular set analysis, const integer bound analysis and rewrite simplifier (2904, 2851, 2768, 2722, 2668, 2860)
* Improve operator fusion for TupleGetItem in relay (2914, 2929
* Compute FLOP of autotvm template for int8 models (2776)
* Common subexpression elimination pass in Relay (2639)
* Improve quantization in Relay (2723)
* Refactor `build_func` in measure module of autotvm to better support cross compiler (2927)
* Quantize all fields of concatenate (2913)
* Remove stale verilog generator (2964)
* Improve Relay printing (2984, 2881, 3030, 3041)
* Add `min_num_branches` option in CombineParallelConv2D (2961)
* Add `expr_visitor`, fix `expr_functor` exponential blowup problem (2988)
* Support Deriving channels when it is not provided in AlterLayout. (2972)
* Enhance BoundDeduce algorithm (2795)
* Enhance loop partition algorithm (2956)
* Better tuple fusion implementation (3092)
* Enhance fusion rule that starts from elemwise and broadcast (2932)
* Remove `on_device` op after annotation in heterogeneous pass (3204)
* Improve canonical and rewrite simplifier (3132, 3149)
* Capture constant external python variables in hybrid script (3157)
* Remove Peano nats from the prelude (3045)
* Macro to define NodeRef methods, constructor style example (3224)
* Consistent RAII scoping API (3231)
* Register all operators' attributes in Python (3175)
* Add module supoort in relay.build (3424)
* Relay pass infrastructure improvement (3319, 3336, 3430, 3353)
* Migrate Relay passes to pass manager (3323, 3289, 3251, 3406)
* Improve heterogeneous annotation by using visitor (3261)
* Support export ADT value in Python (3299)
* Extend TensorComputeOp to allow scalar inputs (3300)
* Transitioning low-level IR away from HalideIR (3533, 3535)
* Tags for ADT constructors (3369)
* IR dumping for debugging (3493)
* Pretty printer and parser roundtrip (3460, 3536)
* Relay type checking (conv2d weight dimension 3511, any shape 3221)
* Relay Module enhancements (remove free variables 3476)
* LLVM DWARF debug information (3420)
* Printer for Layout/BijectiveLayout (3582)
* Type inference escape hatch (3571)
* Making iterators compatible with constructors of STL containers (3624)
* Moving Conv, Dense, Concatenate InferTypes to header (3783)
* Simplify casts of constants 0 and 1 (3758)
* Conditionally replace reduction init axis. (3408)
* Improve Partial Evaluator (3749, 3703)
* Strict mode in Relay pattern matching (3620)
* Quit and clean when TVM is interrupted (3640)
* Make Type Relation catch more errors (3899, 3699)
* Refactor the way we interface between different modules of Relay (3906)
* Introduce `schedule_injective_from_existing` and unify external schedules for all targets (3983)
* [NODE][REFACTOR] Refactor reflection system in node. (4189)
* Unify node system and object (4161, 4115, 4128)
* [Relay][Refactor] Rename Datatype to ADT (4156)
* [Relay] fix exponential blowup in interpreter (3559)
* [Relay] Fix memory leak in the interpreter (4155)
* [rpc] use callback func to do send & recv (4147)
* Add `lift_if_then_else` pass to improve loop partitioning (3865)
* Decrease the complexity of CalcDep from exponential to linear (4053)
* [IR] Make iterators compatible with constructors of STL containers (3624)
* [Relay][Pass] Avoid FoldConstant folding some ops (4245)
* [Relay][Prelude] More dtypes support in `tensor_t` (4233)
* [NODE][REFACTOR] Rename IRFunctor->NodeFunctor, use func pointer (4247)
* [RUNTIME][REFACTOR] Use object protocol to support runtime::Module (4289)
* [CodeGen] Add build config option `disable_assert` to control whether to generate assert. (4340)

Arithmetic Analysis
* Formalize Integer Arithmetic Analysis (RFC: 2588). It is aiming to perform better context-dependent analysis, bound analysis, centralized arithmetic logic and arithmetic simplification. (3272, 3463, 3464, 3368, 3503, 3504 , 3502, 3479 , 3568)
* Introduce FloorDiv/Mod, TruncDiv/Mod, and IndexDiv/Mod for better arithmetic simplification (3976, 3986, 4000, 4014, 4008, 4028)
* [ARITH] Use floordiv for the deduce bound (4025)
* [Simplifier] Rewrite simplification rule to eliminate unnecessary conditionals. (4076)

Runtime and Backend Support
* Provide error msg for failure function call in tvm4j (2967)
* Expose backtrace symbols in Debug mode (3001)
* C++ GraphRuntimeCodegen, Deprecate Python2 (2986)
* Ensure interpreted functions can take values that are not TensorValues (3015)
* Make OpenCL runtime Compatible with OpenCL2.0 (2897)
* Handle INF and NAN in CUDA and OpenCL (3194)
* Update debug graph runtime for more precise layerwise timing (3232)
* ROCM support (llvm printing 3662, ld.lld finding 3664, save to file 3665)
* Threadpool: make `spin_count` configurable (3577)
* RPC worker children termination (3669)
* Vulkan runtime reimplementation (stream approach) (3849)
* Vulkan backend supports Call::reinterpret and vectorized comparison (3795)
* Support MKL on Windows (3837)
* Vulkan IR builder (bool to float 3513)
* Force `code_object_v2` for amd gpu backend (4099)
* [Codegen][cuda-fp16] fallback to fp32 simulation when cuda arch < sm53 (4268)
* Fix and refactoring for AMD gpu backend (4305, 4321, 4341, 4342)
* [Debugger] Sorting op-time breakdown for quicker analysis. (4352)
* [nvcc] enable multiple arch in one fatbin (4377)
* [RUNTIME] Move module export to the function level. (4405)


Frontend and User Interface
* Relay now supports saving and loading parameter dictionaries. (2620)
* Add `max_num_threads` to Hybrid Script, which allows users to get max number of threads for GPU targets ([2672](2672/)).
* Improvements for tensorflow frontend (2830, 2757, 2586), includes decompiling tf control flow (2830)
* Improvements for mxnet frontend (2844, 2777, 2772, 2706, 2704, 2709,, 2739)
* Improvements for keras frontend (2842, 2854)
* Improvements for DarkNet frontend (2673)
* Improvements for ONNX frontend (2843, 2840)
* Better profile result dump in Chrome Tracing format (2922, 2863)
* Unified error handling in NNVM and Relay frontends (2828)
* Improve NNVM to Relay conversion (2734)
* Remove `input_0d_mismatch` special handling for TF Frontend(3087)
* Bumped ONNX version from 1.1.0 to 1.4.1 (3286)
* Simplify parameter handling in Tensorflow frontend (2993)
* CoreML improvement for image scaler and padding (3800)
* Clean up TensorFlow frontend (3710)
* Darknet: Solve tvm parsing darknet resnext failure bug (3778)
* Frontend changes `get_workload` - (3483)
* [TF][Relay][Op] Pass module when infer shape (4287)

AutoTVM
* Support override in `register_topi_compute` and `register_topi_schedule`. (3292)
* Improve graph tuner dealing with Tuple. (3649)
* Add AutoTVM template for conv2d Intel int8. (3955)
* Add AutoTVM template for dense on CUDA. (3923)
* Add AutoTVM template for conv2d on Intel graphics. (3839)
* Optimizing autotvm task extraction speed. (4138)
* [AutoTVM] Add `batch_matmul` to tunable operations. (4242)
* Selecting tuning templates when extracting task. (4338)

Performance Improvements
* Enable AlterOpLayout pass for x86 on Relay (2585). It is essential to get decent performance for CNN-based model on Intel CPUs.
* Better intrinsic matching for x86 CPU and ARM CPU, includes variants of vcvtph2ps and vmlal.s16 (2925, 2748).
* Improve injective schedule for ARM CPU(2801)
* Core functionality for Graph tuner (2184)
* Fast tanh implementation (3255)
* Improve multi-batch conv2d on x86 (3308)
* Improve `non_max_suppression` and `get_valid_counts` for CPU (3305)
* Improve `roi_align` performance for CPU (3296)
* Improve `nms` and `get_valid_count` performance (3282)
* Graph tuner for multiple subgraph (3490)
* For sparsity, fast transpose for square CSR matrices has been now merged, which is a good start point for more general sparse type support.
* Reduce `set_input` and `set_input_zero_copy` overhead (3805)
* Parallelize batch axis for ARM (3931)
* Support cuBLAS BatchMatMul (3936)
* Add AVX512VNNI support for TVM (3388)
* Enhance tuning space of split (3949)
* Enable miopen transpose convolution and fp16 support (3952)
* Improve `conv2d_transpose` schedule on X86 and CUDA (3948)
* Expose llvm.nearbyint intrinsic (4001)
* [TOPI][X86] Pool operator parallel support. (4090)
* Improve layout for several operators (4103, 4040, 4080)
* [Relay][VM] Fix constant folding issue in VM compiler (4077)
* [relay][vm] Reuse allocated device memory (4170)
* [Runtime] Enable option to use OpenMP thread pool (4089)
* [PERF] Parallelize reduction for CPU (4158)
* [TOPI] Tunable Template for Conv2D HWCN on CUDA (4168)
* [TOPI] Add valid auto tvm for Intel Graphics (4078)
* [TOPI] FIFO buffer op, to accelerate sequence modeling with dilated convolutions (4039)
* TensorCore Support using Intrinsic (4136)
* Auto TensorCore CodeGen (4234)
* Use cblas for dense and `batch_matmul` (3787)
* Update TOPI softmax compute and CPU schedule (3680)
* [VTA] Performance optimize, remove unnecessary contigious memory use. (4246)
* [TOPI][AlterOpLayout][ARM] Enabling NHWC to NCHW layout transformation. (4249)
* [PERF] Parallelize reduction for CPU (4158)
* [ThreadPool] Solve thread transitions issue (4344)

Documentation
* Tutorials for deep learning frameworks support in Relay.
* Tutorial for running AutoTVM with Relay (2594).
* Document for Algebraic Data Types (2575).
* Move NNVM tutorials to Relay (2783, 2785, 2766, 2693)
* Documentation on operators (2761)
* Add gradient operator tutorial docs (2751)
* Add compiler pass tutorial docs (2746)
* Add Android Tutorial (2977)
* Developer documentation for InferBound pass (3126)
* Add missing targets to `target_name` documentation (3128)
* Various documentation improvements (3133)
* Add VM doc (3188)
* Update documents for TSim (3409, 3318, 3302, 3343, 3206)
* Improve tvm4j document describing LLVM support (3404)
* Tutorial migration to Python3 (3498)
* Android RPC README (3500)
* Documentation for Relay opcode (3522)
* Tutorial for pass manager (3515)
* Minimum version of Python in docs (3588)
* Relay pass infra (3583)
* X86 Autotune tutorial improvements (3609)
* YOLOv3 tiny Darknet tutorial (3674)
* SSD doc to avoid confusion (3677)
* Tutorial: Build a Graph Convolutional Network on TVM (3681)
* Add docs for analysis namespace (3985)
* [tutorial] Relay pass infra tutorial (4083)
* [DOCS] Add TensorFlow frontend docs (4154)
* Tutorial: update Building a Graph Convolutional Network tutorial (4060)
* [Docs] Add dependency of compilation with LLVM (4117)
* [Documentation]Fix example code in comment of `tvm.build_module.build()` (4195)
* TSIM: add virtual memory support to examples (3868)
* Relay pass infra tutorial (4083)
* Fix the TF tutorial to run against TF2.0 and TF1.x (4104)
* Add `topi.nn.fifo_buffer` to TVM doc (4343)
* License statement (4345, 4359, 4401, 4402, 4408, 4409, 4410, 4414, 4431)

Build and Test
* Increate the robuteness of CI test (2841, 2798, 2793, 2788, 2781, 2727, 2710, 2711, 2923)
* Improve conda build (2742)
* Add caffe2 nnvm frontend to CI (3018)
* Use bridge network and expose port on macOS when launch docker image (3086)
* Run DarkNet tests (2673)
* Add file type check (3116)
* Always run cpptest during build to ensure library correctness (3147)
* Handle more file types in ASF header (3235)
* Add `test_forward_ssd_mobilenet_v1` to `tflite/test_forward` (3350)
* Add Azure build pipeline (3458, 3459)
* Update ci-gpu to v0.52 (3374)
* Enable more visible symbols by default (3365)
* Separate out legacy as a stage in CI (3337)
* Simplify build script, remove python 2 support (3419)
* Ignore rust cargo lock files in rat (3314)
* Improve CUDA Conda package build (3281)
* Update CMakeLists.txt to be more flexible to find the third parties libraries (3354)
* Docker update conda package (3344), requests and pillow (3495), Android demo (3499), rat install (3527), ARM support (3546), LLVM (3590)
* Relay-to-Python testing (3156)
* Code refactoring/remove (3523, 3667)
* Zero-rank testing (3612)
* CMake compilation (3611, 3650, google test 3628)
* Standalone wheel build for TOPI (3657)
* Fixing performance issues in PassUpDomain when fusing and splitting axes (3073)
* conda recipe (3791)
* Allow users to specify download directory (3803)
* Update docs for installation for CUDA (3832)
* Update `hybrid_script.rst` (3799)
* Acknowledge Halide attributions (3824)
* Add psutil dependency (3780)
* Temporary disable rust test (3809)
* Solve occasional CI issue when pad value is all 0 (3801)
* Towards TSIM CI testing (3704)
* Use pip3 for python3 (3742)
* Update docker image `ci_cpu,i386` to include verilator (3738)
* Remove sccache from Rust install (3728)
* Update dmlc-core to the latest commit (3716)
* Update GPU docker (3709)
* Add an option to build with -pthread (3671)
* Add DGL to `{ci_gpu, demo_cpu, demo_gpu}` docker images (3692)
* Use pytest instead of nosetest (3524)
* Enable NHWC of `relay.testing.mobilenet` (3886)
* Add .hsaco save/load for `tesnor_expr` Tutorial (3852)
* Support LLVM trunk (3907)
* Remove GTest cmake flag from install docs (3953)
* Allow `USE_LLVM` to take extra arguments (3954)
* [CI] Pin NNPack pthreadtools version (4152)
* [TOPI] Fix flaky testcase for check round (4211)
* [CI] Move gpu docker binary to cuda10 (4229)
* [CI] use llvm9 for the gpu tests (4224)
* [CI] Update GPU docker to cuda10 (4228)
* [Relay] Install Relay Prelude program in package install (4227)
* [relay] use `time_evaluator` for measurement (4191)
* [Relay] Improve build error when no lowered funcs are produced (4132)
* [llvm] switch to use Align for llvm trunk (4051)
* [CUDA] Update `have_int8` condition to run on compute capability 7.x devices (4214)
* [DOCKER] Pin torchvision==0.4.1 (4140)
* [DOCKER] torch install depends on future package (4098)
* [CodeGen] Disable -mfloat-abi hard option for LLVM < 6.0 (4071)
* Add a python how to example of deploying tvm module with tvm runtime only (4094)
* Hide symbols from dependent libraries if `HIDE_PRIVATE_SYMBOLS` is ON. (4041)
* [BUILD] Disable utvm standalone runtime by default (4240)
* Fix TSIM compile error in Linux (add missing -fPIC flag) (3876)
* Add scalafmt and format existing scala codebase (3880)
* Update TFLite wheel version to 1.13.1 (3435)
* Remove PEP498 f-string new feature for support python3.5 (4250)
* Require LLVM >= 9 for AMDGPU backend (4253)
* Rename ml.dmlc.tvm to org.apache.tvm (4290)
* [Test][TF][Relay] Fix argument preparation for vm test mode (4296)
* Add test for the `qnn_add` operator (4282)
* [CI][DOCKER] Add ONNX runtime dep (4314)
* [CI][DOCKER] Upgrade image to include onnx runtime (4313)
* [CI] Set workspace to be per executor (4336)
* [Build][Windows] Fix Windows build by including cctype (4319)
* [Contrib] Add MKL DNN option (4323)
* [Test][Relay][Pass] Add test case for lambda lift (4317)
* Remove Python imp module as it is deprecated (4275)
* Bump up CUDA log version in tophub.py (4347)
* Add rule for clean in APPs (4364)
* [Relay tests] Temporary Attr Update for Order-Independent Testing (4357)
* [CI] Avoid content-length request in test data download (4375)
* Compare all outputs in TFLite `test_forward_ssd_mobilenet_v1` (4373)

Bug Fixes
* [RELAY] Fix `get_int_tuple`. (2691)
* [ARITH] Select support for integer set analysis. (2687)
* [Relay] Fix error in ANF (too agressively inline atomic expression and create free variable). (2665)
* [Hybrid Script] Fix name conflict and attached scope problem. (2649)
* [Relay] Fix ANF for reference and pattern matching. (2637)
* [Relay] Fix fusion bug when call symbol that is not an operator. (2630)
* Fix missing <sstream> header file. (2629)
* [Relay]Fix the bug in heterogeneous annotation which mistakenly steps into the fused op. (2622)
* [AutoTVM] Fix incorrect localhost usage in RPC mode. (2619)
* [NNVM] Fix incorrectly getting layout attribute as a tuple. (2610)
* [Relay] Fix mutating IF expression. (2601)
* [Tutorial] Fix downloaded file path. (2590)
* [Storage] Fix int32 overflow bug when input is big. (2580)
* [NNVM] Fix non-identity problem for FInplaceIdentity. (2572)
* [Golang] Fix compilation error. (2558)
* [Tensor Expression] Fix missing reduction init predicates. (2495)
* [Relay] Fix missing argument for NCHWc in Relay. (2627)
* [TOPI] Fix `Nms_ir` data race. (2600)
* Fix `compute_inline` with multiple outputs (2934)
* [TEXPR][PASS] Fix thread all reduce to avoid write after read hazzard (2937)
* [FRONTEND][TENSORFLOW] bug fix for tensorflow official slim models. (2864)
* [FRONTEND][ONNX] Some bug fixes and Shape operator fixed for relay. (2850)
* Turn on `USE_SORT` by default (2916)
* [DOCKER] Upgrade ci-cpu to latest v0.50 (2901)
* [TESTS] Import script robustness (set -u) (2896)
* [Relay] Fix name of bias in testing.mlp (2892)
* [TESTS] Improve script robustness (2893)
* Add dense schedules to `__init__` for cpu (2855)
* [Apps] [howto_deploy] fix cxx-flags order and build directory (2888)
* [Relay] Add TVM_DLL for ANF/GNF conversion 2883
* [Relay] Fix Relay ARM CPU depthwise spatial pack schedule alter op layout issue. (2861)
* Fix setting up hints for getaddrinfo (2872)
* Add missing sgx includes (2878)
* Fix error reporting for missing axis (2835)
* Fix an OrderDict initilization bug. (2862)
* Fix Xcode 10 metal compile error (2836)
* tvmrpc: Fix includes (2825)
* Fix `init_proj.py`: Team ID expected (2824)
* [DOCKER] Fix git clone failure. (2816)
* upgrade java style-check due to CVE-2019-9658 (2817)
* [Relay][Quantization] Fix duplicated simulated quantization (2803)
* [Bugfix] Repeat and tile bug fixed, relay tests added (2804)
* Fix caffe2 relay frontend (2733)
* Fix a bug in nnvm to relay converter. (2756)
* Ensure loop count is a constant before trying to unroll. (2797)
* xcode.py: Decode bytes before output 2833
* [WIN] Fix a bug in `find_llvm` when specify llvm-config (2758)
* [DLPACK] fix flaky ctypes support (2759)
* [Bugfix][Relay][Frontend] Fix bug in mxnet converter for `slick_like` (2744)
* [DOCS] Fix tutorial (2724)
* [TOPI][Relay] Fix default `out_dtype` for `conv2d_NCHWc` and Relay (2702)
* [Relay] fix checkwellform (2705)
* fix prelu, now can use on 2d input and add one test (2875)
* [CODEGEN][OPENCL] Fix compile error about ternary expression. (2821)
* Fix Placeholder issue (2834)
* Fix makedirs() condition in contrib (2942)
* Add missing !/bin/bash directive (2951)
* Bilinear resize bug fix from PR 2777 (2857)
* Fix `bias_add` default axis (2829)
* Remove empty ty.rs (2958)
* fix undefined reference to dlopen, etc (2957)
* Removed deprecated `std::unary_function` (2962)
* Add output format to ndk build func (2999)
* Fix java checkstyle version (2998)
* Fix relay invariant error message (3011)
* Fix for caffe2 nnvm frontend (2996)
* Fix rust resnet example (3000)
* Fix x||!x for comparisons in rewrite simplifier (3029)
* Fix BatchMatMulRel typerelation (3032)
* Update dmlc-core, fix default ctors of NodeEntry (3017)
* Fix Fuse (3035)
* Fix PostOrderVisit signature (3048)
* Fix winograd nnpack fp16 (3046)
* Fix some typos (3063, 3112)
* Fix `group_conv2d` unit test (3113)
* Fix bug in ONNX importer (3084)
* Fixing a doc nit (3123)
* Fix type code error for StringImm (3050)
* Fix bug of wrongly generated `device_map` (2990)
* use `unordered_map` instead of map in ANF (3024)
* Fix PRelu layout in Relay (3013)
* Minor addition to graph runtime debug (3129)
* Fix mali conv2d performance regression (3131)
* Fix dense autotvm template registration in ROCm (3136)
* Fix `conv2d_transpose` (3138)
* Fix python lint warnings (3145)
* Some fixes for golang latest version compiler 3119 (3182)
* Add more syncs to fix flaky test caused by `get_valid_counts` (3151)
* Fix AlterLayout Pass (3155)
* Fix a multithreaded bug in llvm LazyInitJIT (3158)
* Fix a tensorflow test bug. (3165)
* Fix concat for ARM (3061)
* Handle vectorize for LE statement (3137)
* Raise exception `group_conv2d_nchw` not supported (3195)
* Quick fix of VTA FPGA Toolchain Installation documentation (3196)
* Check file exists before removing it (3178)
* Fix a bug of flatten in ONNX to Relay converter (3180)
* Fix converter where initializers were not registered as nodes (3143)
* Fix bug in cast to bool (3207)
* Hotfix `build_module` creation (3198)
* Fix sort changing original input data issue (3212)
* Fix bug in vta runtime DepPop function (3208)
* Fix resize nearest with fractional scaling (3244)
* Fix `vta_conv2d` crash issue after change `vta_config.json` (3213)
* Fix a memory leak in OpManager (3263)
* PkgConfig cause crash in PYNQ board due to link library (3257)
* Fix Error messages in tflite.py (3320)
* Fix typos in docs and comments (3309, 3376)
* Bugfix min/max const canonicalize rule (3386)
* Return module from frontend for autotvm (3401)
* Fix constant and reshape in ONNX (3387)
* Default verilator location fix (3324)
* Fix autodiff for conditional expression (3453)
* Gramatical improvements to `tensor_expr_get_started` (3330)
* Fix AutoTVM data structure bug (3462)
* Fix MXNet RNN without providing state initialization as input (3326)
* Fix flaky test on topk and quantize pass (3362)
* Add VTA PYNQ `metal_test` bitstream program logic and fix compilation issue. (3400)
* Fix VTA function Vivado Compile Error. (3375)
* Fix VTA DRAM functionality issue. (3278)
* Fix reshape precompute and type error in ONNX frontend (3230)
* Fix interpreter argument conversion for tuples. (3349)
* Fix code generation for packed functions + tuples in VM (3287)
* Fix memory leak in Relay interpreter (3448)
* Fix x86 depthwise conv2d `alter_op_layout` (3264)
* Create closure object for GlobalVar (3411)
* Fix getting global var in prelude (3405)
* Fix rfactor bugs which related to predicate and loop partition (3382, 3444)
* Fix the bug in AutoTVM where SimulatedAnnealingOptimizer sometimes finds useless candidate (3413)
* Fix name conflict in PartialEval (3402)
* Fix int bound analysis bug for modular (3288)
* Check arg positiveness for modular rules (3279)
* Fixes failure of `sum` and `all` on `axis=0` (3422)
* Fix package path in tflite test (3427)
* Fix Windows build (3429)
* Fix `LSTMBlockCell` in Tensorflow frontend (3410)
* TF fix where output index is ignored (3622)
* Runtime fix for custom datatypes (3471)
* Relay build module warnings (3452)
* Relay partial evaluator (3482)
* Pynq AutoTVM tracker (3497, 3578)
* A normal form test (3525)
* Lint issue (3519, 3615 )
* Any shape testing (3528)
* Android `posix_memalign` (3532)
* Quantization `add_rewrite` and UnifyDTypeScale (3534)
* Bound inference fix (3526)
* Tensorflow NCHW data format (3514)
* First order gradient (3550)
* JS load module example (3556)
* Build error (3552)
* Relay VM debug statements (3565)
* C++ lambda expr (3570)
* Handling of tempdir if subprocess is killed (3574)
* Remove tabs in Chisel source (3603)
* Relay VM DataTypeObject (3604)
* Removing prints (3616)
* Average Pool2D Bug (3607)
* Missing header in `cuda_device_api.cc` (3621)
* Tensorflow frontend fix where `output_shape` is None (3632)
* Winograd accuracy fix (3644)
* Fix comment (3646)
* Zero-input op fix for recursive traversals (3623)
* Python 3.5 compatibility (3675)
* Fix infinite recursive `device_api.ext_dev` call in VTA. (3843)
* Fix `depth_mult` for TensorFlow frontend (3676)
* Fix database APIs for AutoTVM (3821)
* Fix axis of softmax in Keras (3834)
* Fix VTA TensorLoad module (3841)
* Fix inconsistent python/cpp API behavior for `if_then_else`, power (3829)
* Fix code comment of operators in ONNX frontend (3830)
* Added repo for llvm-9 to fix missing dependency issue (3826)
* Fix typo in Relay text parser (3785)
* Fix tvm const warnings (3817)
* Add gfx906 bc (3808)
* Fixed onnx test failures when run on a cpu backend (3764)
* Fix ArgBinder assert order (3794)
* Fix for NoneType Target for quantization (3792)
* Fix out-of-date quantization realize (3790)
* Fix Qnn concatenate InferType (3779)
* Fix dense tuning (3768)
* Fix `visit_pattern` in ExprMutator (3769)
* Fix Chisel Scala style (3765)
* Fix some pass docs (3767)
* Fix mistype in rpc tutorial (3763)
* Fix tvm.scan follow by tvm.compute segfault (3723)
* Fix the potential index overflow in where operator (3751)
* Revert `compile_cmd` kwarg name change (3746)
* Update tophub (3752)
* Fix typo in `ir_pass.h` (3741)
* Bug fix for VME Shell (3737)
* Fix missing apt https transport support (3735)
* Take zero extent loops as NoOp and remove it (3724)
* Fix mxnet converter for hybridblock and add `div_sqrt_dim` (3701)
* Fix partial eval unit test name (3719)
* Fix conv2d schedule code (3648, 3717)
* Remove thread related headers (3713)
* Fix FunctionPass (3712)
* Export tvm::relay::OpRegistry::OpRegistry (3711)
* Fix Metal reinterpret (3706)
* Fix `gather_nd` in Relay (3442)
* Fix error in partial evaluator (3693)
* Align the naming rule for OpAttributeUnImplemented (3695)
* Enable the sparse schedule (3651)
* Fix typo names in Caffe2 frontend (3685)
* Make tests multi-process friendly. (3683)
* Fix typo in README.md (3684)
* Fix doc rendering (3897)
* Add test script starter command to document (3993)
* Add type solver unit tests for unifying quantified funcs (3947)
* Change Vivado install instructions to version 2018.3 (4003)
* Add a link to the defining network description of auto-tuning tutorial (4023)
* Additional MXNet Convolution and Deconvolution tests (4026)
* Adding support to check if an attribute is present or not without having to get the value (3957)
* Fix parser for cast. (3873)
* Fix operator fusion for multiple output (3871)
* Remove extern C warpper for cuBLAS (3877)
* Fix int32 range overflow by using int64 (3870)
* Remove duplicate resize (3902)
* Fix blas cmake for mac os (3898)
* Add another MKL name alias for MKL installed through pypi (3853)
* Numpy compatible dtype inference for `tvm.convert` and `tvm.const` (3861)
* Remove incorrect check for LLVM in C codegen test (3921)
* Fix exponential blowup in interpreter (3559)
* Fix CUDA int8x4 vectorize (3928)
* Make buffer auto broadcast independent to the order of input args (3956)
* Fix benchmark layout in graph tuner (3926)
* Fix Android Demo LLVM version (3962)
* Cast filepath arguments to string (3968)
* Fixes "common" sub crate using nightly and main (3965)
* Changes to make tensorize work. These changes also fix the previously broken test. (3981)
* Remove FLOP computation when calling 3rd party library (4005)
* Use a more intuitive way to limit the ops in a group (4018)
* Add more `pad_mode` support for onnx converter (4029)
* Impose a max op limit to the op fusion pass (4002)
* Fixes issue with CPP enums (4019)
* Int64 shape handling for outputs. (4031)
* [PYTHON] Fix installation for generated grammar (4223)
* [Bugfix] Fix target host for vm compiler (4057)
* [Fix][VM] Fix VM invoke with `set_params` (4079)
* [Fix] Fix a few bugs when dtype is fp16 (4088)
* [Relay][Frontend][TF] Fix Size operator (4175)
* [cmake][ANTLR] Support setting path to ANTLR jar (4176)
* Fix infer type of kernel in dense. (4125)
* [Relay] Fix match case in Python-side expr functor (4037)
* Split `adaptive_pool2d_avg` into sum and div (4186)
* [AutoTVM] Fix Split Factors when `no_tail` is off (4044)
* Fix extent one for the `post_stmt` in loop partition (3734)
* [TOPI] Fix bug in intel graphics auto tune (4093)
* [ARITH] Fix lowering of `floormod(x, y) != 0` (4127)
* [ARITH] Fix the rule `y < x && x <= y` (4220)
* [Bugfix][TF] reset graph after getting tag of savedmodel (4055)
* [Fix] Fix the logic of the number of nodes checking in op fusion (4074)
* [VTA] hotfix for de10-nano driver (4081)
* Fixing tensor not found issue in bitserial operator (4095)
* Fix wrong `n_trial` number in autotvm tutorials' progress bar if `n_trial` is larger then config space. (4070)
* [PATCH] Fix undefined `__floatdihf` in libtvmruntime.so on aarch64. (4119)
* [ARITH] Fix lowering of FloorMod (4236)
* [Relay][Frontend][Tensorflow] Fix GatherV2 (4238)
* Fix typing.Deque import error for Python 3.5 (4254)
* [VTA] Hotfix for padded load test in Chisel VTA (4264)
* [Contrib] Fix error message at `callback_get_section_size()` (4221)
* [TOPI] Fix bug in Winograd on CUDA (4260)
* AutoTVM: Fix hang/crash issues on feature extraction (3689)
* [TOPI][CUDA] Fix Winograd Kernel Size Support (4276)
* [Relay][Frontend][Tensorflow] Fix type assignment for 'tf.range' operator (4294)
* Fix incorrect call to Unicode Win32 InetPton (4306)
* [Relay][Frontend][Keras] handle `batch_norm` op params well (4310)
* [VTA] fix error when `memory_id` is `VTA_MEM_ID_OUT` (4330)
* [Doc][fix] fix sphinx parsing for pass infra tutorial (4337)
* [Codegen] remove fp16 function override for cuda (4331)
* [TFLite] Fix Prelu unified shape error (4326)
* [Relay][Frontend][TF] Fix transpose when axes is not a param (4327)
* [VTA] Bug fix for padded load with large inputs (4293)
* Fix inconsistent operator tag name (4134)
* Fix for a specific case when loop partitioning with indivisble. (4243)
* Send list as argument to `schedule_conv2d` (4358)
* [Docker] Fix TVM folder name for installing on Android and OpenCL. (4363)
* Fix TFLite Reshape assert (4320)
* [Relay][Frontend][TF] Fix slice when begin or size is not Const (4372)
* Fix compilaton of bfloat16 on Windows (4415)

Known Issues

* The performance of Relay VM is not good enough on GPU, due to memeory allocation overhead which will be resolved later.
* TFlite rounding vs tvm rounding causing differences in accuracy and potentially off by 1 errors. For reference 3900
* TFlite pre-quantized network support is still a work in progress and the project would welcome further contributions.
* TSIM build requires `python` command exist on the host. See [forum discussion](https://discuss.tvm.ai/t/vta-build-failure/4790) for details.
* Tensorflow control flow has not been fully supported in the frontend converter.
* `topi.floor_div` is inconsistent with floor division semantic when result number is close to an integer.


Depreciations
* Deprecating python2 support and following release (v0.6). (2994, 2986)
* NNVM is deprecated and will be removed in a future version. (4333, 4368)

0.5

This release features several major improvements. Some of the highlights are: Arbitrary bits quantization algorithm; High-level auto-differentiable programming IR -- Relay.

- Fully featured 8-bit network support
- 8bit quantizer
- Arbitrary bits quantization algorithm
- Intel cpu support
- ARM cpu support
- NVidia GPU 8-bit kernel
- int8 gemm recipe
- int8 conv2d
- Autotvm integration
- Automated tuning and scheduling
- AutoTVM optimizations for mobile GPUs
- AutoTVM optimizations for CUDA
- AutoTVM optimizations for x86
- Initial release of the differentiable programming IR, Relay
- Generic & informative Relay error reporting 2408
- Relay IR text format support 1781
- Support control flows
- A Normal Form Canonicalization 2251
- Type system support
- End to end compilation
* Frontend support: Caffe2 2507 , CoreML 2476 , Keras 2376 , MXNet 2163 , ONNX, TFLite 2365
* Operator coverage 1799 2051
- FoldScaleAxis 2020
- SimplifyInference 2033
- CombineParallelConv2D 2089
- InstrumentBoundCheckers pass 2079
- Bind & FoldConstant 2100
- Alter Op Layout 2150
- General OpFusion 2090
- CodeGen
- Gcc / g++ compatible C code generator for TVM 2161
- Device type annotation for heterogeneous compilation 2361
- Cache packed func ptr, lift alloca 2070
- Generalize compute to tensor region 1476
- Runtime
- Relay interpreter and compiler 1954
- Heterogeneous runtime 1695
- Language bindings: Golang runtime 1470 , Rust runtime 1597
- Add min_repeat_ms to time_evaluator 2200
- Bundled interpreter demonstration 2297
- Enable PlanMemory in the graph runtime 2120
- Language Binding
- Rust frontend 2292
- VTA
- Improved RPC for VTA 2043
- Hybrid python programming model
- Support for scheduling 2416
- Support for Inter-function call 2287
- Backend support 2477
- TOPI
- Initial support for sparse tensor computation
- Improve ARM CPU depthwise convolution performance 2345
- Port winograd ops to relay 2356
- Add faster-rcnn proposal op 2420
- Tutorials and docs
- Relay language docs 2232
- Tutorials on how to use SGX backend
- How to write a pass in python
- General lowering flow of TVM
- How to do tensorize
- TFLite frontend tutorial 2508
- Keras seq2seq model for translation tutorial 1815
- Committer guide and tips 2468
- Code review guideline on API designs 2459

0.4

This release features several major improvements. The high-level graph optimizer is now part of TVM repo. Some of the highlights are: Initial support of AutoTVM for automated optimization; customized accelerator backend VTA.

- Tensor operator primitives
- Introduce attrs field to operator primitives(e.g. compute) to store additional metadata, the attrs can be used as hint for scheduling
- Enable embedding of asm micro-kernels
- Hybrid python programming model
- python AST based IR builder interface
- support GPU programs
- AutoTVM, Automated tuning, and scheduling
- basic autotvm infra
- GPU IR verifier
- basic autotuning tutorial
- topi integration
- ARM support
- winograd support
- initial support of ARM autotuning records
- TOPI Vision
- Generic GPU sort support(useful for vision)
- SSD operator support
- TOPI numpy consistency
- Rename all binary operators for numpy consistecy: broadcast_add-> add, broadcast_sub -> substract, broadcast_mul -> multiply, broadcast_div->divide
- New operators: slice, LRN, equal, not_equal, less, greater
- tutorials on topi
- Initial low-bit operator support support
- Optimized popcount generation on ARM
- general bit-serial convolution and GEMM
- optimized low bit kernels
- parallel optimization
- New topi backend optimization for intel graphics
- Adapt AVX schedules for SSE target
- VTA: customized accelerator backend
- custom hardware backend example
- tutorials on how to use customized accelerator
- Initial experimental support for HLS backend
- Bugfix in SPIRV code generator for vulkan
- libdevice support, enable NVPTX backend
- Introduce NDArrayContainer for managed NDarray
- RPC and Device API
- Support communication between big/small endian machines.
- RPC and device API protocol upgrade (this is a non-backward compatible change) to support big-small endian communication. This is a non-backward compatible change, need to use the latest version of TVM runtime with the RPC
- graduate rpc from contrib, tvm.contrib.rpc->tvm.rpc
-Support tracker in Android RPC, add fault tolerance for AutoTVM
- BIG.LITTLE aware threadpool
- tvm4j graph runtime that runs end to end workload in java
- DLPack support
- Support from_dlpack and to_dlpack
- Enables bridges to pytorch
- Enable link of stackvm in runtime
- Tensorflow graphdef frontend
- Keras frontend
- improved to support reuse layers, add activations
- ONNX
- gather, LRN
- CoreML frontend
- Support C-RNN and activation functions
- Fix grads for sum and expand_like
- Enhanced operator fusion for multiple elemwise branches
- Separate nnvm fusion and compilation pass
- Unified build system to cmake, customizable cmake path for vulkan, rocm, cuda

0.3

This release features numerous improvements in TOPI and backends. We make the first step toward object detection support in TOPI, featuring operators necessary for YOLO and SSDs. The topi now supports numpy-style API and operator overloading. RPC is significantly improved to support resource allocation and using a pool of devices. We are adding two new backends: WebGL for running GPUs on the browser, and Vulkan for running on next-generation graphics API.

- TOPI Vision operators
- SSD support
- YOLO support
- NMS operator support in vision
- TOPI general numpy-style operators
- numpy style operator overload in topi
- more operators: flip, take
- dilation support on conv2d and depthwise
- 8bit support
- ARM 8bit gemm
- ARM 8bit conv
- Low bit operator support
- popcount intrinsics
- 1-bit fully connected
- Contrib: MPSDNN fully-connected and conv2d support
- Better RPC support
- RPC Tracker support to allow centralized resource management
- RPC protocol upgrade (this is a non-backward compatible change) to support timeout in the proxy
- This is a breaking change, need to use the latest version of TVM runtime with the RPC
- Fault-tolerant to early server termination with correct exception propagated
- RPC support enabled for ROCm AMDGPUs
- Tutorials and docs
- How to deploy to android devices.
- Optimizations for hardware backends
- intel CPU (AVX and AVX512)
- Schedule Primitives
- rfactor now support factor_axis to specify the factored dimension in the result
- cache_write now support multiple output operators
- enable warp memory which generates shuffle instructions
- Framework bridge
- MXNet bridge supported
- C++ compiler API support
- build migration
- topi migration to c++
- Target system in c++
- WebGL backend
- runtime and codegen
- topi integration
- end to end pipeline on the browser
- Vulkan backend
- vulkan runtime
- spirv code generator
- Security
- intel SGX runtime support
- multi-threaded SGX runtime
- LLVM 7.0 support
- Robustness
- VerifyMemory to verify incorrect GPU schedules that writes into GPU memory from cpu
- Verify compute formulas
- Better CPU parallel runtime

0.2

This release comes with a complete set of TOPI support for NNVM compiler, which allows compilation of end to end workloads.
We also make major improvements in supporting new backends: ROCm for AMDGPUs and ARM GPU.

- Backend support
- Support LLVM mainline(4.0, 5.0, 6.0)
- Support ROCM stack for AMD GPUs
- More robust OpenCL support for ARM GPUs
- Android RPC runtime
- Multi-threading optimization for ARM
- multi-threaded depthwise
- multi-threaded conv2d
- New schedule primitives
- storage_align for shared memory alignment
- double_buffer
- UnrollLoop : more robust version of unroll loop, count maximum steps that can be unrolled.
- Full set of TOPI operators
- Introduce tvm.target to specify target options for compilation better.
- broadcast/ reduction operators
- pooling and global pooling
- Generic target support for topi
- schedule with external libraries
- End to end deep learning pipelines for CPU, GPU, ARM GPU
- Tutorials
- How to load compiled module in any language runtime
- How to use java runtime
- Contrib library: MIOpen, CuDNN
- Ongoing items that contains functioning pieces
- WebGL backend
- C++ compiler support
- MPS DNN
- low bit support, introduced popcount

Page 1 of 2

Links

Releases

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.