Highdicom

Latest version: v0.23.1

Safety actively analyzes 682387 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 1 of 7

0.23.1

Patch release with a few minor bug fixes

Bug Fixes
* Update docs to reflect python 3.10 dependency by CPBridge in https://github.com/ImagingDataCommons/highdicom/pull/308
* Allow searching SRs using LongCodeValue and URNCodeValue. Fix for 309 by rhaxton in https://github.com/ImagingDataCommons/highdicom/pull/310
* Fix for BOT construction with pydicom 3, by CPBridge in https://github.com/ImagingDataCommons/highdicom/pull/314
* Fix SR if `SpacingBetweenSlices` is not set, by Fedalto in https://github.com/ImagingDataCommons/highdicom/pull/315

New Contributors
* rhaxton made their first contribution in https://github.com/ImagingDataCommons/highdicom/pull/310

**Full Changelog**: https://github.com/ImagingDataCommons/highdicom/compare/v0.23.0...v0.23.1

0.23.0

Dependencies

- Highdicom now depends upon pydicom > 3.0.1. 301
- Highdicom now requires python > 3.10. This was necessitated by a similar move from pydicom. 301
- Remove references to `numpy.float_` to allow working with numpy>2

Tooling/Repo

- We have adopted the contributor covenant. 271
- Various style improvements 286 287 289 290 291 292
- We have moved to `pyproject.toml` metadata. 293
- Improve automated checks to enforce repo review rules 296

Features

- Further checks on graphic data for SRs 276
- Additional checks for microscopy bulk annotation coordinate types 281
- Further improvements in segmentation creation efficiency 285
- Allow creation of pyramid segmentations with floating point arrays, or with multiple segments 297
- Add options allowing to infer the subject context from an image 298
- Use pydicom 3 features to enable additional transfer syntaxes in compression.
- Add methods to get a list of images used as evidence within an SR 303
- Add a `further_source_images` option to the segmentation constructor 304

Fixes

- Minor fixes for microscopy bulk annotation graphic data 278
- Remove the JP2 wrapper from JPEG 2000 encoding

Docs

- Added a gitflow section to the developer guide. 272

0.22.0

Probably left this one far too long...

New Features
- New features for parsing existing Microscopy Bulk Annotations: `annread` function and `annotation_coordinate_type` property (230)
- Multiprocessing for frame encoding in segmentation construction (245)
- A major set of improvements for working with tiled segmentations including ability to pass in total pixel matrices to the segmentation constructor, the ability to create and read TILED_FULL segmentations, and the ability to construct segmentation total pixel matrices from tiled images (248)
- New function to create multiresolution segmentation pyramids (253)

Bug fixes
- Allow duplicate entries in the ReferencedSeriesSequence of a segmentation image (229)
- Remove plane orientation from the shared functional groups in the case of segs using the slide coordinate system (236), a DICOM compliance issue
- Exclude incompatible pydicom 2.4.0 in `setup.py` (238)
- Fixes to various value representations (239)
- Fix return type of `highdicom.seg.DimensionIndexSequence.get_plane_positions_of_image` (240)
- Correctly account for chrominance subsampling of natively encoded `YBR_FULL_422` images in the `ImageFileReader` (242)
- Work around pillow 10.0.0 breaking changes (244)
- Specimen description and preparation fixes within microscopy related content items (246)
- A number of style improvements (257 258 259 261 262 263 264 265 268)

Performance improvements
- Significant improvements to segmentation creation efficiency (227)

Documentation and tests
- Add `codespell` tool to check for spelling errors in the docs (237)
- Fix documentation links (250)
- Fix the readthedoc config (256)
- Fix to an incorrectly written frame encoding test (270)
- Use latest version of github actions (266)

New contributors

Thanks to yarikoptic thomas-albrecht elitalien and DimitriPapadopoulos for their first contributions to highdicom!

0.21.1

Bug fixes

* Correctly deal with `LongCodeValue` and `URNCodeValue` in `CodedConcept.from_dataset()` (226)
* Remove an unnecessary table join when fetching segmentation pixel (224)
* Fix `ImageFileReader`'s handling of `DicomFileLike` objects, meaning that you can now read frames from a open file handle or a `pydicom.filebase.DicomBytesIO` object (an in-memory buffer) (223).

New contributors

* Thanks to RobinFrcd for his first contribution to the library (223)!

0.21.0

New features

- The implementation of methods for constructing segmentation pixels arrays from a `highdicom.seg.Segmentation` object (`highdicom.seg.Segmentation.get_pixels_by_source_instance()`, `highdicom.seg.Segmentation.get_pixels_by_source_frame()`, and `highdicom.seg.Segmentation.get_pixels_by_dimension_index_values()`) have been considerably refactored with a general focus on improving the usability for large segmentation objects (https://github.com/ImagingDataCommons/highdicom/pull/208). These changes are compatible with existing code except that in some cases the methods may return numpy arrays with a smaller unsigned integer data type than they previously did. User code should see significant speed-ups without any changes. The new versions have several improvements:
- Improvements in computational efficiency due to a redesign of the way the frame look-up table is stored under the hood. Now an in-memory sqlite database is used through the Python standard library `sqlite3` module. This allows for considerably faster and more flexible querying.
- Significant improvements in memory efficiency for the case where `combine_segments=True`. Previously the memory usage scaled as O(n) in the number of segments, now it is constant (O(1)).
- When combining segments, the methods now automatically determine and return an appropriate unsigned integer datatype to return the smallest array that can represent all segments. This has been observed to reduce both the memory usage and improve speed (largely due to the reducing the need to allocate memory for unnecessarily large numpy arrays)
- There is a new parameter, `dtype`, that allows the user to choose the data type of the output array (overriding the automatically determined default).
- There is a further new boolean parameter `skip_overlap_checks`, which allows the user to specify that the check for overlapping segments in the case where `combine_segments=True` is skipped. This makes a significant difference to runtime. If this is done and two segments do overlap, the segment with the highest output segmentation number will be placed into the output array preferentially. The default behaviour matches the previous behaviour in that checks for overlapping segments are performed, and an error is raised if any two segments overlaps.
- The user guide is updated to the preferred way of accessing pixel data using the above methods.
- There is now an optional parameter in `from_dataset()` methods called `copy`. By default, this parameter is True, meaning that a full deepcopy of the original dataset is made before conversion to the highdicom class, which matches the previous behaviour. This is the "safest" option that prevents potentially unwanted behaviour downstream if the user tries to re-use the original dataset. However if the user chooses to set this parameter to `False`, then the deepcopy is skipped and the original dataset is updated in place. This can give a very significant speed-up when the segmentation object are large. Additionally this is used in the `segread` and `srread` functions to give a significant speed up as it is never necessary to deepcopy the temporary object read from file (https://github.com/ImagingDataCommons/highdicom/pull/207).
- Added a new function `highdicom.sr.srread()`, similar to the existing `highdicom.seg.segread()`, to read a dataset representing a supported Structured Report SOP Class from a file and convert it to the appropriate highdicom class automatically (https://github.com/ImagingDataCommons/highdicom/pull/215).
- Users may now pass a single-element Sequence to the `content` parameter of the `__init__` methods of Structured Report SOP classes, as alternative to passing a `pydicom.Dataset`. This is more intuitive for users that have constructed a `highdicom.sr.MeasuremenrtReport` class and wish to use it as the content of a new Structured Report (https://github.com/ImagingDataCommons/highdicom/pull/216).

Enhancements

- The library's repository was moved to the [ImagingDataCommons](https://github.com/ImagingDataCommons) organization on GitHub, and all URLs were updated (https://github.com/ImagingDataCommons/highdicom/pull/212).
- The library's Github Actions now run the tests using Python 3.11 in addition to older versions (https://github.com/ImagingDataCommons/highdicom/pull/217) to ensure that highdicom supports the latest Python version.

Bug fixes

- A minor tweak to the routine for segmentation construction that avoids creating a copy of large portions of the input array just to find the unique values (https://github.com/ImagingDataCommons/highdicom/pull/221).
- A bug, resulting in the `ReferencedImageSequence` of a `highdicom.ann.MicroscopyBulkSimpleAnnotations` always being empty, was resolved (https://github.com/ImagingDataCommons/highdicom/pull/220).
- A mistake in the docstrings of the `PixelToReferenceTransformer`, `ReferenceToPixelTransformer`, and `ImageToReferenceTransformer` classes was fixed (https://github.com/ImagingDataCommons/highdicom/pull/209).
- A bug that resulted in GSPS creation failing when the referenced images have multiple values for WindowWidth, WindowCenter and/or WindowCenterWidthExplanation was fixed (https://github.com/ImagingDataCommons/highdicom/pull/211).

0.20.0

New features

- Move `pylibjpeg` and related dependencies (`pylibjpeg-libjpeg` and `pylibjpeg-openjpeg`) from requirements to optional requirements. This means that the default installation is compatible with highdicom's MIT license. There are now some transfer syntaxes that are not supported with the default installation. Users can install highdicom with the optional dependencies by specifying `highdicom[libjpeg]` as their installation target. Update github test runners to support both the cases where the optional requirements are installed and are not installed (https://github.com/herrmannlab/highdicom/pull/201).

Enhancements

- Add citation file to allow citing the package (https://github.com/herrmannlab/highdicom/pull/204).

Bug fixes

- Use a deepcopy for `CodedConcept.from_dataset()` to avoid issues with optional attributes of the sequence getting lost (https://github.com/herrmannlab/highdicom/pull/205).
- When the omit_empty_frames option is used for a Segmentation and an empty segmentation mask is passed (i.e. a mask with all zeros), the constructor will issue a UserWarning and ignore the omit_empty_frames option (https://github.com/herrmannlab/highdicom/pull/181).

Page 1 of 7

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.