* New features
* Added `FitnessOffsetProblem` convenience wrapper to the `problem` module
* Added `ParabaloidProblem` and `QuadraticFamilyProblem` to the `real_rep.problems` module
* CGP now supports auxiliary constant parameters on each node via `CGPWithParametersDecoder`
* Added `ImageXYProblem` to `executable_rep.problems`, and a `cgp_images.py` example demonstrating it
* Added experimental parameters to `mutate_gaussian()` to allow transforming genes by a linear function
* Added a `check_constraints()` operator to the `CGPDecoder` class, to help verify custom algorithms
* Added `LeadingOnes`, `DeceptiveTrap`, and `TwoMax` problems to `binary_rep.problems` module
* Added `SumPhenotypePlotProbe`, and a new example using it to visualizing MaxOnes-style problems
* Added `multiobjective` sub-package that provides support for NSGA-II
* `multiobjective.nsga2.nsga2()` top-level monolithic function
* `multiobjective.problems.MultiObjectiveProblem` is new abstract base class for multiobjective problems
* `multiobjective.ops` contains supporting pipeline operators, though most users will not see those if they use `nsga()`
* API changes
* `Individual` now has a `phenome` property
* Mutation operators (`mutate_gaussian()` and `mutate_binomial()`) can now be passed a list of `std` values to adjust the mutation width by gene.
* Removed an undocumented normalization term from `real_rep.problems.CosineFamilyProblem`
* Expose a `reset` method on `PopulationMetricsPlotProbe`
* `util.inc_generation()` now takes a `start_generation` argument
* `genome_mutate_gaussian()` is now a curried function instead of a closure
* `plot_2d_problem()` and `plot_2d_function()` now accept extra `kwargs` to forward to Matplotlib
* `MaxOnes` now takes an optional `target_string` to generalize it to other target patterns