----------------------------------------------
New features:
- add ``'min_rel_change'`` as optional variable in calculation of confidence intervals with
``Model.conf_interval()``. (PR 937).
- ``Model.eval_uncertainty`` now takes an optional ``dscale`` parameter (default value of 0.01) to
set the step size for calculating derivatives (PR 933).
- add calculation of ``predicted_interval`` to ``Model.eval_uncertainty`` (PR 933).
Bug fixes/enhancements:
- restore best-fit parameter values for high accuracy values of constrained values (PR 907)
- improvement to Model for the difference between Parameter, "independent variable", and
"option". With this change, keyword arguments to model functions with non-numerice
default values such as ``do_thing=True``, or ``form='linear'`` has those arguments
become clearly identified as independent variables,and use the provided values as
default values. (PR 941)
- better saving/loading saved states of Model now use dill, have several cleanups, and
are now versioned for future-proofing. Also, propagate funcdets for Parameters when
loading a Model. (PR 932, PR 934)
- in the TNC method, ``maxfun`` is used instead of ``maxiter``.
- fix bug calculating r-squared for fits with weights (PR 921, PR 923)
- fix bug in ``modelresult.eval_uncertainty()`` after ``load_modelresult()`` (PR 909)
- use StringIO for ``pandas.read_json``.
- add test for MinimizerResult.uvars after successful fit (PR 913)
- adding an example using basinhopping, can take other methods as command-line argument
Maintenance/Deprecations:
- drop support for Python 3.7 that reached EOL on 2023-06-27 (PR 927)
- fix tests for Python 3.12 and Python 3.13-dev
- increase minimum numpy verstio to 1.23 and scipy to 1.8.
- updates for compatibility with numpy 2.0
- the ``dill`` package is now required. (940)
- build switchded to use pyproject.toml (928)
- fix broken links in Examples gallery
- fix intersphinx mapping to scipy docs.