Added
- Adds function to store initial model checkpoint for post-processing via `log.save_init_model(model)`.
- `MLELogger` got a new optional argument: `config_dict`, which allows you to provide a (nested) configuration of your experiment. It will be stored as a `.yaml` file if you don't provide a path to an alternative configuration file. The file can either be a `.json` or a `.yaml`:
python
log = MLELogger(time_to_track=['num_updates', 'num_epochs'],
what_to_track=['train_loss', 'test_loss'],
experiment_dir="experiment_dir/",
config_dict={"train_config": {"lrate": 0.01}},
model_type='torch',
verbose=True)
- The `config_dict`/ loaded `config_fname` data will be stored in the `meta` data of the loaded log and can be easily retrieved:
python
log = load_log("experiment_dir/")
log.meta.config_dict
Fixed
- Fix byte decoding for strings stored as arrays in `.hdf5` log file. Previously this only worked for multi seed/config settings.