Mlx

Latest version: v0.24.1

Safety actively analyzes 722581 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 1 of 9

0.24.1

🐛

0.24.0

Highlights
* Much faster fused attention with support for causal masking
* [Benchmarks](https://github.com/ml-explore/mlx/pull/1978)
* Improvements in prompt processing speed and memory use, [benchmarks](https://github.com/ml-explore/mlx-lm/pull/40)
* Much faster small batch fused attention for e.g. speculative decoding, [benchmarks](https://github.com/ml-explore/mlx/pull/1922)
* Major redesign of CPU back-end for faster CPU-GPU synchronization

Core

Performance
* Support fused masking in `scaled_dot_product_attention`
* Support transposed head/seq for fused vector `scaled_dot_product_attention`
* SDPA support for small batch (over sequence) queries
* Enabling fused attention for head dim 128
* Redesign CPU back-end for faster cpu/gpu synch

Features
* Allow debugging in distributed mode
* Support `mx.fast.rms_norm` without scale
* Adds nuclear norm support in `mx.linalg.norm`
* Add XOR on arrays
* Added `mlx::core::version()`
* Allow non-square lu in `mx.linalg.lu`
* Double for lapack ops (`eigh`, `svd`, etc)
* Add a prepare tb ring script
* Ring docs
* Affine quant always in fp32

Optimizers
* Add a multi optimizer `optimizers.MultiOptimizer`

Bug Fixes
* Do not define `MLX_VERSION` globally
* Reduce binary size post fast synch
* Fix vmap for flatten
* Fix copy for large arrays with JIT
* Fix grad with inplace updates
* Use same accumulation precision in gemv as gemm
* Fix slice data size
* Use a heap for small sizes
* Fix donation in scan
* Ensure linspace always contains start and stop
* Raise an exception in the rope op if input is integer
* Limit compile buffers by
* fix `mx.float64` type promotion
* Fix CPU SIMD erf_inv
* Update smooth_l1_loss in losses.

0.23.2

🚀

0.23.1

0.23.0

0.22.1

🚀

Page 1 of 9

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.