Changes
- When [`ExhaustiveFeatureSelector`](https://rasbt.github.io/mlxtend/user_guide/feature_selection/ExhaustiveFeatureSelector/) is run with `n_jobs == 1`, joblib is now disabled, which enables more immediate (live) feedback when the `verbose` mode is enabled. ([#985](https://github.com/rasbt/mlxtend/pull/985) via [Nima Sarajpoor](https://github.com/NimaSarajpoor))
- Disabled unnecessary warning in [`EnsembleVoteClassifier`](https://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/) ([#941](https://github.com/rasbt/mlxtend/issues/941))
- Fixed various documentation issues ([849](https://github.com/rasbt/mlxtend/issues/849) and [#951](https://github.com/rasbt/mlxtend/issues/951) via [Lekshmanan Natarajan](https://github.com/zuari1993))
- Fixed "Edit on GitHub" button ([1024](https://github.com/rasbt/mlxtend/issues/1024))
New Features and Enhancements
- The [`mlxtend.frequent_patterns.association_rules`](https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/) function has a new metric - Zhang's Metric, which measures both association and dissociation. ([#980](https://github.com/rasbt/mlxtend/pull/980))
- Internal [`mlxtend.frequent_patterns.fpmax`](https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/association_rules/) code improvement that avoids casting a sparse DataFrame into a dense NumPy array. ([#1000](https://github.com/rasbt/mlxtend/pull/1000) via [Tim Kellogg](https://github.com/tkellogg))
- The [`plot_decision_regions`](https://rasbt.github.io/mlxtend/user_guide/plotting/plot_decision_regions/) function now has a `n_jobs` parameter to parallelize the computation. (In a particular use case, on a small dataset, there was a 21x speed-up (449 seconds vs 21 seconds on local HPC instance of 36 cores). ([#998](https://github.com/rasbt/mlxtend/pull/998) via [Khalid ElHaj](https://github.com/Ne-oL))
- Added [`mlxtend.frequent_patterns.hmine`](https://rasbt.github.io/mlxtend/user_guide/frequent_patterns/hmine/) algorithm and documentation for mining frequent itemsets using the H-Mine algorithm. ([#1020](https://github.com/rasbt/mlxtend/pull/1020) via [Fatih Sen](https://github.com/fatihsen20))