* PaddleX API
- 新增检测任务和实例分割任务的预测结果可视化、以及预测错误原因分析,辅助分析模型效果
- 新增检测任务的负样本优化,抑制背景区域的误检
- 完善语义分割任务的预测结果,支持返回预测类别和归一化后的预测置信度
- 完善图像分类任务的预测结果,支持返回归一化后的预测置信度
* 预测部署
- 完备PaddleX python预测部署, PaddleX模型使用2个API即可快速完成部署
- PaddleX C++部署全面升级,支持飞桨视觉套件PaddleDetection、PaddleClas、PaddleSeg、PaddleX的端到端统一部署能力
- 全新发布Manufacture SDK,提供工业级多端多平台部署加速的预编译飞桨部署开发包(SDK),通过配置业务逻辑流程文件即可以低代码方式快速完成推理部署
* PaddleX GUI
- 升级PaddleX GUI,支持30系列显卡
- 目标检测任务新增模型PP-YOLO V2, COCO test数据集精度达到49.5%、V100预测速度达到68.9 FPS
- 目标检测任务新增4.2MB的超轻量级模型PP-YOLO tiny
- 语义分割任务新增实时分割模型BiSeNetV2
- 新增导出API训练脚本功能,无缝切换PaddleX API训练
* 产业实践案例
- 新增以目标检测任务为主的钢筋计数、缺陷检测案例教程
- 新增以实例分割任务为主的机械手抓取案例教程
- 新增串联目标检测、语义分割、传统视觉算法的工业表计读数的训练和部署案例教程
- 新增Windows系统下使用C语言部署案例教程
PaddleX v2.0.0rc0(5.19/2021)
* 全面支持飞桨2.0动态图,更易用的开发模式
* 目标检测任务新增[PP-YOLOv2](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/object_detection/ppyolov2.py), COCO test数据集精度达到49.5%、V100预测速度达到68.9 FPS
* 目标检测任务新增4.2MB的超轻量级模型[PP-YOLO tiny](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/object_detection/ppyolotiny.py)
* 语义分割任务新增实时分割模型[BiSeNetV2](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/tutorials/train/semantic_segmentation/bisenetv2.py)
* C++部署模块全面升级
* PaddleInference部署适配2.0预测库[(使用文档)](https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/deploy/cpp)
* 支持飞桨[PaddleDetection]( https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/deploy/cpp/docs/models/paddledetection.md)、[PaddleSeg](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/deploy/cpp/docs/models/paddleseg.md)、[PaddleClas](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/deploy/cpp/docs/models/paddleclas.md)以及PaddleX的模型部署
* 新增基于PaddleInference的GPU多卡预测[(使用文档)](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/deploy/cpp/docs/demo/multi_gpu_model_infer.md)
* GPU部署新增基于ONNX的的TensorRT高性能加速引擎部署方式
* GPU部署新增基于ONNX的Triton服务化部署方式[(使用文档)](https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/deploy/cpp/docs/compile/triton/docker.md)