Initial PyTorch Calibrated Pre-Release Alpha
layers:
- NumericalCalibrator for calibrating numerical features. Supports bound and monotonicity constraints.
- CategoricalCalibrator for calibrating categorical features. Supports bound and pairwise monotonicity constraints.
- Linear for linearly combining inputs. Supports monotonicity and weighted average constraints.
configs:
- NumericalFeatureConfig for configuring numerical features for easy modeling using model constructors.
- CategoricalFeatureConfig for configuring categorical features for easy modeling using model constructors.
data:
- CSVData class for loading, preparing, and batching data for calibrated modeling.
enums:
- Monotonicity for specifying monotonicity constraints.
- NumericalCalibratorInit for specifying the initialization scheme to use for a NumericalCalibrator output keypoints.
- CategoricalCalibratorInit for specifying the initialization scheme to use for a CategoricalCalibrator output keypoints.
- InputKeypointsInit for specifying the initialization scheme to use for NumericalCalibrator input keypoints.
- FeatureType for determining the type of feature from its config.
models:
- CalibratedLinear model for easy construction of a calibrated linear model using feature configs.