Now **scikit-fallback** has a [documentation webpage](https://scikit-fallback.readthedocs.io/en/latest/) and works w/ older versions of `scikit-learn`, `scipy`, and `numpy` (24, 26)!
See also the [v0.1.0](https://github.com/sanjaradylov/scikit-fallback/releases/tag/v0.1.0) release.
0.1.0
Fixes
* 🐛 `skfb.estimators.RateFallbackClassifierCV` accepts only one fallback rate (11). * 🐞 `skfb.metrics.PAConfusionMatrixDisplay` accepts rejector pipelines (18).
Features
Stable
* Predict-reject recall score `skfb.metrics.predict_reject_recall_score` (14). * New estimators accept fitted estimators and don't require refitting for inference. * Support for scikit-learn>=1.0,<=1.2. * Multi-threshold fallback classification: `skfb.estimators.multi_threshold_predict_or_fallback` and `skfb.estimators.MultiThresholdFallbackClassifier`. * Fallback classification based on anomaly detection: `skfb.estimators.AnomalyFallbackClassifier` (13 and more). * Fallback mode `"ignore"`: don't return or store fallbacks (16 and more).
Experimental
* `skfb.estimators.RateFallbackClassifierCV` accepts only one fallback rate (11). * Error-fallback loss: python >>> from skfb.experimental import enable_error_rejection_loss >>> from skfb.metrics import error_rejection_loss
* Tuned multi-threshold fallback classifier w/ cross-validation: python >>> from skfb.experimental import enable_multi_threshold_fallback_classifier_cv >>> from skfb.estimators import MultiThresholdFallbackClassifierCV * Utility to summarize confidence scores class-wise.
0.0.1
Bug fixes * Incorrect masking of fallbacks of ambiguity-threshold-based rules (3) * Errors when fitting `skfb.estimators.ThresholdFallbackClassifierCV(fallback_mode="return")` (4)
Improvements * Passing scikit-learn metrics as scorers in `skfb.estimators.ThresholdFallbackClassifierCV(fallback_mode="return")` (4) * Inference w/o training the fitted base estimator of `skfb.estimators.ThresholdFallbackClassifier` (6)
0.0.0
This is the first release of `scikit-fallback` and it implements rudimentary tools for supporting and evaluating rejections in classification problems: * `sfkb.estimators.ThresholdFallbackClassifier(CV)` and `RateFallbackClassifier` for (meta-)classification w/ a reject option. * `skfb.metrics` for Predict-Fallback metrics, confusion matrices, and curves. * `skfb.core.array` for NDArray-compatible FBNDArray for storing predictions and fallback masks.