==========================
Major changes
-------------
* New encoder: :class:`DatetimeEncoder` can transform a datetime column into several numerical columns
(year, month, day, hour, minute, second, ...). It is now the default transformer used
in the :class:`TableVectorizer` for datetime columns. :pr:`239` by :user:`Leo Grinsztajn <LeoGrin>`
* The :class:`TableVectorizer` has seen some major improvements and bug fixes:
- Fixes the automatic casting logic in ``transform``.
- To avoid dimensionality explosion when a feature has two unique values, the default encoder (:class:`~sklearn.preprocessing.OneHotEncoder`) now drops one of the two vectors (see parameter `drop="if_binary"`).
- ``fit_transform`` and ``transform`` can now return unencoded features, like the :class:`~sklearn.compose.ColumnTransformer`'s behavior. Previously, a ``RuntimeError`` was raised.
:pr:`300` by :user:`Lilian Boulard <LilianBoulard>`
* **Backward-incompatible change in the TableVectorizer**:
To apply ``remainder`` to features (with the ``*_transformer`` parameters),
the value ``'remainder'`` must be passed, instead of ``None`` in previous versions.
``None`` now indicates that we want to use the default transformer. :pr:`303` by :user:`Lilian Boulard <LilianBoulard>`
* Support for Python 3.6 and 3.7 has been dropped. Python >= 3.8 is now required. :pr:`289` by :user:`Lilian Boulard <LilianBoulard>`
* Bumped minimum dependencies:
- scikit-learn>=0.23
- scipy>=1.4.0
- numpy>=1.17.3
- pandas>=1.2.0 :pr:`299` and :pr:`300` by :user:`Lilian Boulard <LilianBoulard>`
* Dropped support for Jaro, Jaro-Winkler and Levenshtein distances.
- The :class:`SimilarityEncoder` now exclusively uses ``ngram`` for similarities,
and the `similarity` parameter is deprecated. It will be removed in 0.5. :pr:`282` by :user:`Lilian Boulard <LilianBoulard>`
Notes
-----
* The ``transformers_`` attribute of the :class:`TableVectorizer` now contains column
names instead of column indices for the "remainder" columns. :pr:`266` by :user:`Leo Grinsztajn <LeoGrin>`