New model additions
Moshi
The Moshi model was proposed in Moshi: a speech-text foundation model for real-time dialogue by Alexandre Défossez,
Laurent Mazaré, Manu Orsini, Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard Grave and Neil Zeghidour.
Moshi is a speech-text foundation model that casts spoken dialogue as speech-to-speech generation. Starting from a
text language model backbone, Moshi generates speech as tokens from the residual quantizer of a neural audio codec,
while modeling separately its own speech and that of the user into parallel streams. This allows for the removal of
explicit speaker turns, and the modeling of arbitrary conversational dynamics. Moshi also predicts time-aligned text
tokens as a prefix to audio tokens. This “Inner Monologue” method significantly improves the linguistic quality of
generated speech and provides streaming speech recognition and text-to-speech. As a result, Moshi is the first
real-time full-duplex spoken large language model, with a theoretical latency of 160ms, 200ms in practice.
![image](https://github.com/user-attachments/assets/00ed5bcc-47b2-4b73-a8f1-2aa0a2e12b32)
* Moshi integration by ylacombe in 33624
Zamba
Zamba-7B-v1 is a hybrid between state-space models (Specifically Mamba) and transformer, and was trained using
next-token prediction. Zamba uses a shared transformer layer after every 6 mamba blocks. It uses the Mistral