**This release adds binary quantization, bind parameters for multimedia SQL queries and performance improvements**
⚡ Scalar quantization. Supports 1 bit (binary) through 8 bit quantization. Can dramatically reduce vector storage requirements.
🚀 SQL bind parameters. Enables searching binary content with SQL statements, along with being a standard best practice.
See below for full details on the new features, improvements and bug fixes.
New Features
--------------------------
- Add scalar quantization support to vectors (583)
- Feature request: Bind variable support when searching with SQL using Content=True mode (564)
- Add cls pooling option (565)
- Add prefix parameter for object storage (568)
- Add parameter to RetrieveTask to disable directory flattening (569)
- Add support for binary indexes to Faiss ANN (585)
- Add support for scalar data to torch and numpy ANN backends (587)
- Add quantization notebook (588)
- Add API extensions notebook (591)
- Add env variable to disable macOS MPS devices (592)
Improvements
--------------------------
- Allow searching for images (404)
- Update LLM pipeline to support template parameter (566)
- Update recommended models (573)
- Is it possible to add chat history to extractor workflow? (575)
- Extractor pipeline improvements (577)
- Update documentation (582)
- Move vector normalization to vectors module (584)
- Update benchmarks to read configuration (586)
- Update torch version in Dockerfile (589)
- Update Faiss ANN to support IVF strings without number of cells (594)
- Update documentation to note SQL bind parameters (596)
Bug Fixes
--------------------------
- Inconsistency in Embeddings behavior in Applications (571)