<img src="https://what.wuhanstudio.uk/images/what.png" width=300px style="float: left;" >
WHite-box Adversarial Toolbox (WHAT)
A Python Library for Deep Learning Security that focuses on Real-time White-box Attacks.
![](docs/images/demo.gif)
Installation
python
pip install whitebox-adversarial-toolbox
Usage (CLI)
Usage: what [OPTIONS] COMMAND [ARGS]...
The CLI tool for WHitebox-box Adversarial Toolbox (what).
Options:
--help Show this message and exit.
Commands:
attack Manage Attacks
example Manage Examples
model Manage Deep Learning Models
Useful commands:
List supported models
$ what model list
List supported Attacks
$ what attack list
List available examples
$ what example list
Supported Models
[x] 1 : YOLOv3 ( Darknet ) Object Detection YOLOv3 pretrained on MS COCO dataset.
[x] 2 : YOLOv3 ( Mobilenet ) Object Detection YOLOv3 pretrained on MS COCO dataset.
[x] 3 : YOLOv3 Tiny ( Darknet ) Object Detection YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 4 : YOLOv3 Tiny ( MobileNet ) Object Detection YOLOv3 Tiny pretrained on MS COCO dataset.
[x] 5 : YOLOv4 ( Darknet ) Object Detection YOLOv4 pretrained on MS COCO dataset.
[x] 6 : YOLOv4 Tiny ( Darknet ) Object Detection YOLOv4 Tiny pretrained on MS COCO dataset.
[x] 7 : SSD ( MobileNet v1 ) Object Detection SSD pretrained on VOC-2012 dataset.
[x] 8 : SSD ( MobileNet v2 ) Object Detection SSD pretrained on VOC-2012 dataset.
[x] 9 : FasterRCNN ( VGG16 ) Object Detection Faster-RCNN pretrained on VOC-2012 dataset.
Supported Attacks
Use `what attack list` to list available attacks:
1 : TOG Attack Object Detection
2 : PCB Attack Object Detection
- [A Man-in-the-Middle Attack against Object Detection Systems](https://arxiv.org/abs/2208.07174).
- [Adversarial Objectness Gradient Attacks in Real-time Object Detection Systems](https://ieeexplore.ieee.org/document/9325397).
<br />
Available Examples
Demo Type Description
--------------------------------------------------------------------------------
1 : Yolov3 Demo Model Inference Yolov3 Object Detection.
2 : Yolov4 Demo Model Inference Yolov4 Object Detection.
3 : FasterRCNN Demo Model Inference FRCNN Object Detection.
4 : MobileNet SSD Demo Model Inference MobileNet SSD Object Detection.
5 : TOG Attack Demo Adversarial Attack Real-time TOG Attack against Yolov3 Tiny.
6 : PCB Attack Demo Adversarial Attack Real-time PCB Attack against Yolov3 Tiny.