Highlights
- Add [mview_mperson_end2end_estimator](https://github.com/openxrlab/xrmocap/blob/main/xrmocap/core/estimation/mview_mperson_end2end_estimator.py) for learning-based method.
- Add SMPLX support and allow smpl_data initiation in [mview_sperson_smpl_estimator](https://github.com/openxrlab/xrmocap/blob/main/xrmocap/core/estimation/mview_sperson_smpl_estimator.py).
- Add multiple optimizers, detailed joint weights and priors, grad clipping for better SMPLify results.
- Add [mediapipe_estimator](https://github.com/openxrlab/xrmocap/blob/main/xrmocap/human_perception/keypoints_estimation/mediapipe_estimator.py) for human keypoints2d perception.
New Features
- Add `mview_mperson_end2end_estimator`, performing MvP estimation on customized data.
- Add `mediapipe_estimator`, another alternative human keypoints2d perception method like `mmpose_top_down_estimator`.
- Add `RemoveDuplicate` keypoints3d optimizer to remove duplicate MvP keypoints3d predictions.
Refactors
- Refactor `mview_sperson_smpl_estimator`, compatible with SMPLX.
- Refactor `SMPLify`, add grad clipping, joint angle priors, loss-parameter mapping, per-parameter optimizers, and body part weights.
- Refactor evaluation for learning-based methods.
Documentations
- Update download links for aliyun resources.
- Add documents for end2end estimator.
- Update tutorials for Shelf_50 demo.
CICD
- Fix linting error caused by flake8.
Bug Fixes
- Fix joint angle limits for shoulder prior.
- Fix device error for `betas` initiation.
- Fix file error for saving keypoints3d predicted by multiple GPUs evaluation.