PyPi: Tensorflow-Rocm

CVE-2020-15208

Safety vulnerability ID: 57982

This vulnerability was reviewed by experts

The information on this page was manually curated by our Cybersecurity Intelligence Team.

Created at Sep 25, 2020 Updated at Nov 29, 2024
Scan your Python projects for vulnerabilities →

Advisory

Tensorflow-rocm versions 1.15.4, 2.0.3, 2.1.2, 2.2.1, and 2.3.1 include a fix for CVE-2020-15208: In tensorflow-lite before versions 1.15.4, 2.0.3, 2.1.2, 2.2.1 and 2.3.1, when determining the common dimension size of two tensors, TFLite uses a "DCHECK" which is no-op outside of debug compilation modes. Since the function always returns the dimension of the first tensor, malicious attackers can craft cases where this is larger than that of the second tensor. In turn, this would result in reads/writes outside of bounds since the interpreter will wrongly assume that there is enough data in both tensors. The issue was patched in commit 8ee24e7949a203d234489f9da2c5bf45a7d5157d

Affected package

tensorflow-rocm

Latest version: 2.14.0.600

TensorFlow is an open source machine learning framework for everyone.

Affected versions

Fixed versions

Vulnerability changelog

This vulnerability has no description

Resources

Use this package?

Scan your Python project for dependency vulnerabilities in two minutes

Scan your application

Severity Details

CVSS Base Score

CRITICAL 9.8

CVSS v3 Details

CRITICAL 9.8
Attack Vector (AV)
NETWORK
Attack Complexity (AC)
LOW
Privileges Required (PR)
NONE
User Interaction (UI)
NONE
Scope (S)
UNCHANGED
Confidentiality Impact (C)
HIGH
Integrity Impact (I)
HIGH
Availability Availability (A)
HIGH

CVSS v2 Details

HIGH 7.5
Access Vector (AV)
NETWORK
Access Complexity (AC)
LOW
Authentication (Au)
NONE
Confidentiality Impact (C)
PARTIAL
Integrity Impact (I)
PARTIAL
Availability Impact (A)
PARTIAL