PyPi: Tensorflow-Rocm

CVE-2020-15265

Safety vulnerability ID: 57966

This vulnerability was reviewed by experts

The information on this page was manually curated by our Cybersecurity Intelligence Team.

Created at Oct 21, 2020 Updated at Nov 29, 2024
Scan your Python projects for vulnerabilities →

Advisory

Tensorflow-rocm 2.4.0 includes a fix for CVE-2020-15265: In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.

Affected package

tensorflow-rocm

Latest version: 2.14.0.600

TensorFlow is an open source machine learning framework for everyone.

Affected versions

Fixed versions

Vulnerability changelog

This vulnerability has no description

Resources

Use this package?

Scan your Python project for dependency vulnerabilities in two minutes

Scan your application

Severity Details

CVSS Base Score

HIGH 7.5

CVSS v3 Details

HIGH 7.5
Attack Vector (AV)
NETWORK
Attack Complexity (AC)
LOW
Privileges Required (PR)
NONE
User Interaction (UI)
NONE
Scope (S)
UNCHANGED
Confidentiality Impact (C)
NONE
Integrity Impact (I)
NONE
Availability Availability (A)
HIGH

CVSS v2 Details

MEDIUM 5.0
Access Vector (AV)
NETWORK
Access Complexity (AC)
LOW
Authentication (Au)
NONE
Confidentiality Impact (C)
NONE
Integrity Impact (I)
NONE
Availability Impact (A)
PARTIAL