Safety vulnerability ID: 58196
The information on this page was manually curated by our Cybersecurity Intelligence Team.
Tensorflow-rocm-enhanced versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 and 2.4.0 includes a fix for CVE-2020-26271: In affected versions, under certain cases, loading a saved model can result in accessing uninitialized memory while building the computation graph. The MakeEdge function creates an edge between one output tensor of the src node (given by output_index) and the input slot of the dst node (given by input_index). This is only possible if the types of the tensors on both sides coincide, so the function begins by obtaining the corresponding DataType values and comparing these for equality. However, there is no check that the indices point to inside of the arrays they index into. Thus, this can result in accessing data out of bounds of the corresponding heap allocated arrays. In most scenarios, this can manifest as unitialized data access, but if the index points far away from the boundaries of the arrays this can be used to leak addresses from the library.
Latest version: 2.4.3
TensorFlow is an open source machine learning framework for everyone.
This vulnerability has no description
Scan your Python project for dependency vulnerabilities in two minutes
Scan your application