PyPi: Tensorflow

CVE-2021-29614

Safety vulnerability ID: 40472

This vulnerability was reviewed by experts

The information on this page was manually curated by our Cybersecurity Intelligence Team.

Created at May 14, 2021 Updated at Nov 29, 2024
Scan your Python projects for vulnerabilities →

Advisory

Tensorflow 2.5.0, 2.4.2, 2.3.3, 2.2.3, and 2.1.4 include a fix for CVE-2021-29614: The implementation of 'tf.io.decode_raw' produces incorrect results and crashes the Python interpreter when combining 'fixed_length' and wider datatypes. The implementation of the padded version (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the 'fixed_length' value to the size of the type argument. The 'fixed_length' argument is also used to determine the size needed for the output tensor (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code (https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the 'out_data' pointer by 'fixed_length * sizeof (T)' bytes whereas it only copied at most 'fixed_length' bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory.

Affected package

tensorflow

Latest version: 2.18.0

TensorFlow is an open source machine learning framework for everyone.

Affected versions

Fixed versions

Vulnerability changelog

TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.io.decode_raw` produces incorrect results and crashes the Python interpreter when combining `fixed_length` and wider datatypes. The implementation of the padded version(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc) is buggy due to a confusion about pointer arithmetic rules. First, the code computes(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L61) the width of each output element by dividing the `fixed_length` value to the size of the type argument. The `fixed_length` argument is also used to determine the size needed for the output tensor(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L63-L79). This is followed by reencoding code(https://github.com/tensorflow/tensorflow/blob/1d8903e5b167ed0432077a3db6e462daf781d1fe/tensorflow/core/kernels/decode_padded_raw_op.cc#L85-L94). The erroneous code is the last line above: it is moving the `out_data` pointer by `fixed_length * sizeof(T)` bytes whereas it only copied at most `fixed_length` bytes from the input. This results in parts of the input not being decoded into the output. Furthermore, because the pointer advance is far wider than desired, this quickly leads to writing to outside the bounds of the backing data. This OOB write leads to interpreter crash in the reproducer mentioned here, but more severe attacks can be mounted too, given that this gadget allows writing to periodically placed locations in memory. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range. See CVE-2021-29614.


CONFIRM:https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h: https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8pmx-p244-g88h
MISC:https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d: https://github.com/tensorflow/tensorflow/commit/698e01511f62a3c185754db78ebce0eee1f0184d

Resources

Use this package?

Scan your Python project for dependency vulnerabilities in two minutes

Scan your application

Severity Details

CVSS Base Score

HIGH 7.8

CVSS v3 Details

HIGH 7.8
Attack Vector (AV)
LOCAL
Attack Complexity (AC)
LOW
Privileges Required (PR)
LOW
User Interaction (UI)
NONE
Scope (S)
UNCHANGED
Confidentiality Impact (C)
HIGH
Integrity Impact (I)
HIGH
Availability Availability (A)
HIGH

CVSS v2 Details

MEDIUM 4.6
Access Vector (AV)
LOCAL
Access Complexity (AC)
LOW
Authentication (Au)
NONE
Confidentiality Impact (C)
PARTIAL
Integrity Impact (I)
PARTIAL
Availability Impact (A)
PARTIAL