Safety vulnerability ID: 57817
The information on this page was manually curated by our Cybersecurity Intelligence Team.
Tensorflow-rocm 2.3.4, 2.4.3, 2.5.1 and 2.6.0 include a fix for CVE-2021-37645: In affected versions the implementation of `tf.raw_ops.QuantizeAndDequantizeV4Grad` is vulnerable to an integer overflow issue caused by converting a signed integer value to an unsigned one and then allocating memory based on this value. The [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L126) uses the `axis` value as the size argument to `absl::InlinedVector` constructor. But, the constructor uses an unsigned type for the argument, so the implicit conversion transforms the negative value to a large integer. The Tensorflow team has patched the issue in GitHub commit 96f364a1ca3009f98980021c4b32be5fdcca33a1.
Latest version: 2.14.0.600
TensorFlow is an open source machine learning framework for everyone.
This vulnerability has no description
Scan your Python project for dependency vulnerabilities in two minutes
Scan your application