Safety vulnerability ID: 57935
The information on this page was manually curated by our Cybersecurity Intelligence Team.
Tensorflow-rocm 2.3.4, 2.4.3, 2.5.1 and 2.6.0 include a fix for CVE-2021-37654: In affected versions an attacker can trigger a crash via a 'CHECK'-fail in debug builds of TensorFlow using 'tf.raw_ops.ResourceGather' or a read from outside the bounds of heap allocated data in the same API in a release build. The implementation (https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/resource_variable_ops.cc#L660-L668) does not check that the 'batch_dims' value that the user supplies is less than the rank of the input tensor. Since the implementation uses several for loops over the dimensions of 'tensor', this results in reading data from outside the bounds of heap allocated buffer backing the tensor. The Tensorflow team has patched the issue in GitHub commit bc9c546ce7015c57c2f15c168b3d9201de679a1d.
Latest version: 2.14.0.600
TensorFlow is an open source machine learning framework for everyone.
This vulnerability has no description
Scan your Python project for dependency vulnerabilities in two minutes
Scan your application