Safety vulnerability ID: 57802
The information on this page was manually curated by our Cybersecurity Intelligence Team.
Tensorflow-rocm 2.3.4, 2.4.3, 2.5.1 and 2.6.0 include a fix for CVE-2021-37657: In affected versions an attacker can cause undefined behavior via binding a reference to null pointer in all operations of type 'tf.raw_ops.MatrixDiagV*'. The implementation (https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/linalg/matrix_diag_op.cc) has incomplete validation that the value of 'k' is a valid tensor. The Tensorflow team has checked that this value is either a scalar or a vector, but there is no check for the number of elements. If this is an empty tensor, then code that accesses the first element of the tensor is wrong. The Tensorflow team has patched the issue in GitHub commit f2a673bd34f0d64b8e40a551ac78989d16daad09.
Latest version: 2.14.0.600
TensorFlow is an open source machine learning framework for everyone.
This vulnerability has no description
Scan your Python project for dependency vulnerabilities in two minutes
Scan your application