PyPi: Tensorflow-Rocm

CVE-2021-37677

Safety vulnerability ID: 57790

This vulnerability was reviewed by experts

The information on this page was manually curated by our Cybersecurity Intelligence Team.

Created at Aug 12, 2021 Updated at Nov 29, 2024
Scan your Python projects for vulnerabilities →

Advisory

TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for 'tf.raw_ops.Dequantize' has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses 'axis' to select between two different values for 'minmax_rank' which is then used to retrieve tensor dimensions. However, code assumes that 'axis' can be either '-1' or a value greater than '-1', with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

Affected package

tensorflow-rocm

Latest version: 2.14.0.600

TensorFlow is an open source machine learning framework for everyone.

Affected versions

Fixed versions

Vulnerability changelog

This vulnerability has no description

Resources

Use this package?

Scan your Python project for dependency vulnerabilities in two minutes

Scan your application

Severity Details

CVSS Base Score

MEDIUM 5.5

CVSS v3 Details

MEDIUM 5.5
Attack Vector (AV)
LOCAL
Attack Complexity (AC)
LOW
Privileges Required (PR)
LOW
User Interaction (UI)
NONE
Scope (S)
UNCHANGED
Confidentiality Impact (C)
NONE
Integrity Impact (I)
NONE
Availability Availability (A)
HIGH

CVSS v2 Details

LOW 2.1
Access Vector (AV)
LOCAL
Access Complexity (AC)
LOW
Authentication (Au)
NONE
Confidentiality Impact (C)
NONE
Integrity Impact (I)
NONE
Availability Impact (A)
PARTIAL