Safety vulnerability ID: 57589
The information on this page was manually curated by our Cybersecurity Intelligence Team.
Tensorflow-rocm 2.8.4, 2.9.3 and 2.10.1 include a fix for CVE-2022-41894: The reference kernel of the 'CONV_3D_TRANSPOSE' TensorFlow Lite operator wrongly increments the data_ptr when adding the bias to the result. Instead of 'data_ptr += num_channels;' it should be 'data_ptr += output_num_channels;' as if the number of input channels is different than the number of output channels, the wrong result will be returned and a buffer overflow will occur if num_channels > output_num_channels. An attacker can craft a model with a specific number of input channels. It is then possible to write specific values through the bias of the layer outside the bounds of the buffer. This attack only works if the reference kernel resolver is used in the interpreter.
https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h6q3-vv32-2cq5
Latest version: 2.14.0.600
TensorFlow is an open source machine learning framework for everyone.
This vulnerability has no description
Scan your Python project for dependency vulnerabilities in two minutes
Scan your application