What changed
Breaking changes
To build a HMC or NUTS kernel in 0.2.1 and previous versions one needed to provide a `potential_fn` function:
python
kernel = nuts.kernel(potential_fn, step_size, inverse_mass_matrix)
Instead we now ask the users to provide the more commonly used log-probability function:
python
kernel = nuts.kernel(logprob_fn, step_size, inverse_mass_matrix)
where `logprob_fn = lambda x: -potential_fn(*x)`
New features
- Tempered Sequential Monte Carlo (AdrienCorenflos 40 )
- Rosenbluth Metropolis Hastings algorithm (AdrienCorenflos 74 )
- Effective Sample Size, RHat (junpenglao 66 )
- Higher-order integrators for HMC (rlouf 59 )
Bugs
* Missing key splitting in trajectory integration (wiep 53 )