Few-Shot Prompting + Retrieval for Ingredients
This release includes many new updates, most notably an interface allowing you to define custom few-shot examples for ingredient functions and dynamically retrieve the most relevant examples at runtime via a [haystack-based retriever](https://github.com/deepset-ai/haystack).
For example:
python
from blendsql import blend, LLMQA
from blendsql.ingredients.builtin import DEFAULT_QA_FEW_SHOT
ingredients = {
LLMQA.from_args(
few_shot_examples=[
*DEFAULT_QA_FEW_SHOT,
{
"question": "Which weighs the most?",
"context": {
{
"Animal": ["Dog", "Gorilla", "Hamster"],
"Weight": ["20 pounds", "350 lbs", "100 grams"]
}
},
"answer": "Gorilla",
Below are optional
"options": ["Dog", "Gorilla", "Hamster"]
}
],
Will fetch `k` most relevant few-shot examples using embedding-based retriever
k=2,
Lambda to turn the pd.DataFrame to a serialized string
context_formatter=lambda df: df.to_markdown(
index=False
)
)
}
smoothie = blend(
query=blendsql,
db=db,
ingredients=ingredients,
default_model=model,
)
See [this section in the README](https://github.com/parkervg/blendsql?tab=readme-ov-file#few-shot-prompting) for more information.
* Ingredients rework by parkervg in https://github.com/parkervg/blendsql/pull/34
**Full Changelog**: https://github.com/parkervg/blendsql/compare/v0.0.26...v0.0.27