Bnaug

Latest version: v1.1.2

Safety actively analyzes 681866 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

1.1.1

* Remove exact version of bnlp_toolkit to fixed gensim build problem

1.1.0

New Feature
Random Augmentation
- Random remove part and generate new sentence

At present it's removing word, stopwords, punctuations, numbers and generate new sentences

py
from bnaug.sentence import RandomAugmentation

raug = RandomAugmentation()
sentence = "আমি ১০০ বাকি দিলাম"
output = raug.random_remove(sentence)
print(output)



or apply individually

py
from bnaug import randaug

text = "১০০ বাকি দিলাম"
output = randaug.remove_digits(text)
print(output)

text = "১০০! বাকি দিলাম?"
output = randaug.remove_punctuations(text)
print(output)

text = "আমি ১০০ বাকি দিলাম"
randaug.remove_stopwords(text)
print(output)

text = "আমি ১০০ বাকি দিলাম"
randaug.remove_random_word(text)
print(output)

text = "আমি ১০০ বাকি দিলাম"
randaug.remove_random_char(text)
print(output)

1.0.0

bnaug (Bangla Text Augmentation)
__bnaug__ is a text augmentation tool for Bangla text.

Installation

pip install bnaug

- Dependencies
- pytorch >=1.7.0

Necessary Model Links
- [word2vec](https://huggingface.co/sagorsarker/bangla_word2vec/resolve/main/bangla_word2vec_gen4.zip)
- [glove vector](https://huggingface.co/sagorsarker/bangla-glove-vectors/resolve/main/bn_glove.300d.zip)

Sentence Augmentation
Token Replacement
- Mask generation based augmentation

py
from bnaug.sentence import TokenReplacement

tokr = TokenReplacement()
text = "আমি ঢাকায় বাস করি।"
output = tokr.masking_based(text, sen_n=5)


- Word2Vec based augmentation

py
from bnaug.sentence import TokenReplacement

tokr = TokenReplacement()
text = "আমি ঢাকায় বাস করি।"
model = "msc/bangla_word2vec/bnwiki_word2vec.model"
output = tokr.word2vec_based(text, model=model, sen_n=5, word_n=5)
print(output)


- Glove based augmentation

py
from bnaug.sentence import TokenReplacement

tokr = TokenReplacement()
text = "আমি ঢাকায় বাস করি।"
vector = "msc/bn_glove.300d.txt"
output = tokr.glove_based(text, vector_path=vector, sen_n=5, word_n=5)
print(output)


Back Translation
Back translation based augmentation first translate Bangla sentence to English and then again translate the English to Bangla.

py
from bnaug.sentence import BackTranslation

bt = BackTranslation()
text = "বাংলা ভাষা আন্দোলন তদানীন্তন পূর্ব পাকিস্তানে সংঘটিত একটি সাংস্কৃতিক ও রাজনৈতিক আন্দোলন। "
output = bt.get_augmented_sentences(text)
print(output)



Text Generation
- Paraphrase generation

py
from bnaug.sentence import TextGeneration

tg = TextGeneration()
text = "বিমানটি যখন মাটিতে নামার জন্য এয়ারপোর্টের কাছাকাছি আসছে, তখন ল্যান্ডিং গিয়ারের খোপের ঢাকনাটি খুলে যায়।"
output = tg.parapharse_generation(text)
print(output)


Inspired from
- [nlpaug](https://github.com/makcedward/nlpaug)
- [amitness blog post](https://amitness.com/2020/05/data-augmentation-for-nlp/)

Links

Releases

Has known vulnerabilities

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.