----------------
*Release date: 2016-06-22*
This release makes Bottleneck more robust, releases GIL, adds new functions.
**More Robust**
- :func:`bn.move_median` can now handle NaNs and `min_count` parameter
- :func:`bn.move_std` is slower but numerically more stable
- Bottleneck no longer crashes on byte-swapped input arrays
**Faster**
- All Bottleneck functions release the GIL
- median is faster if the input array contains NaN
- move_median is faster for input arrays that contain lots of NaNs
- No speed penalty for median, nanmedian, nanargmin, nanargmax for Fortran
ordered input arrays when axis is None
- Function call overhead cut in half for reduction along all axes (axis=None)
if the input array satisfies at least one of the following properties: 1d,
C contiguous, F contiguous
- Reduction along all axes (axis=None) is more than twice as fast for long,
narrow input arrays such as a (1000000, 2) C contiguous array and a
(2, 1000000) F contiguous array
**New Functions**
- move_var
- move_argmin
- move_argmax
- move_rank
- push
**Beware**
- :func:`bn.median` now returns NaN for a slice that contains one or more NaNs
- Instead of using the distutils default, the '-O2' C compiler flag is forced
- :func:`bn.move_std` output changed when mean is large compared to standard deviation
- Fixed: Non-accelerated moving window functions used min_count incorrectly
- :func:`bn.move_median` is a bit slower for float input arrays that do not contain NaN
**Thanks**
Alphabeticaly by last name
- Alessandro Amici worked on setup.py
- Pietro Battiston modernized bottleneck installation
- Moritz E. Beber set up continuous integration with Travis CI
- Jaime Frio improved the numerical stability of move_std
- Christoph Gohlke revived Windows compatibility
- Jennifer Olsen added NaN support to move_median
**Contributors**
.. contributors:: v1.0.0..v1.1.0