Coremltools

Latest version: v8.1

Safety actively analyzes 681866 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 3 of 7

6.0

* MLProgram compression: affine quantization, palettize, sparsify. See `coremltools.compression_utils`
* Python 3.10 support.
* Support for latest scikit-learn version (`1.1.2`).
* Support for latest PyTorch version (`1.12.1`).
* Support for TensorFlow `2.8`.
* Support for options to specify input and output data types, for both images and multiarrays
* Update coremltools python bindings to work with GRAYSCALE_FLOAT16 image datatype of CoreML
* New options to set input and output types to multi array of type float16, grayscale image of type float16 and set output type as images, similar to the `coremltools.ImageType` used with inputs.
* New compute unit enum type: `CPU_AND_NE` to select the model runtime to the Neural engine and CPU.
* Support for several new TensorFlow and PyTorch ops.
* Changes to opset (available from iOS16, macOS13)
* New MIL ops: `full_like`, `resample`, `reshape_like`, `pixel_unshuffle`, `topk`
* Existing MIL ops with new functionality: `crop_resize`, `gather`, `gather_nd`, `topk`, `upsample_bilinear`.
* API Breaking Changes:
* Do not assume source prediction column is “predictions”, fixes 58.
* Remove `useCPUOnly` parameter from `coremltools.convert` and `coremltools.models.MLModel`. Use `coremltools.ComputeUnit` instead.
* Remove ONNX support.
* Remove multi-backend Keras support.
* Various other bug fixes, optimizations and improvements.

6.0b2

* Support for new MIL ops added in iOS16/macOS13: `pixel_unshuffle`, `resample`, `topk`
* Update coremltools python bindings to work with GRAYSCALE_FLOAT16 image datatype of CoreML
* New compute unit enum type: `CPU_AND_NE`
* New PyTorch ops: `AdaptiveAvgPool2d`, `cosine_similarity`, `eq`, `linalg.norm`, `linalg.matrix_norm`, `linalg.vector_norm`, `ne`, `PixelUnshuffle`
* Support for `identity_n` TensorFlow op
* Various other bug fixes, optimizations and improvements.

6.0b1

* MLProgram compression: affine quantization, palettize, sparsify. See `coremltools.compression_utils`.
* New options to set input and output types to multi array of type float16, grayscale image of type float16 and set output type as images, similar to the `coremltools.ImageType` used with inputs.
* Support for PyTorch 1.11.0.
* Support for TensorFlow 2.8.
* [API Breaking Change] Remove `useCPUOnly` parameter from `coremltools.convert` and `coremltools.models.MLModel`. Use `coremltools.ComputeUnit` instead.
* Support for many new PyTorch and TensorFlow layers
* Many bug fixes and enhancements.


**Known issues**
* While conversion and CoreML models with Grayscale Float16 images should work with ios16/macos13 beta, the coremltools-CoreML python binding has an issue which would cause the `predict` API in coremltools to crash when the either the input or output is of type grayscale float16
* The new Compute unit configuration `MLComputeUnitsCPUAndNeuralEngine` is not available in coremltools yet

5.2

* Support latest version (1.10.2) of PyTorch
* Support TensorFlow 2.6.2
* Support New PyTorch ops:
* `bitwise_not`
* `dim`
* `dot`
* `eye`
* `fill`
* `hardswish`
* `linspace`
* `mv`
* `new_full`
* `new_zeros`
* `rrelu`
* `selu`
* Support TensorFlow ops
* `DivNoNan`
* `Log1p`
* `SparseSoftmaxCrossEntropyWithLogits`
* Various bug fixes, clean ups and optimizations.
* This is the final coremltools version to support Python 3.5

5.1

* New supported PyTorch operations: `broadcast_tensors`, `frobenius_norm`, `full`, `norm` and `scatter_add`.
* Automatic support for inplace PyTorch operations if non-inplace operation is supported.
* Support PyTorch 1.9.1
* Various other bug fixes, optimizations and improvements.

5.0

What’s New

* Added a new kind of Core ML model type, called ML Program. TensorFlow and Pytorch models can now be converted to ML Programs.
* To learn about ML Programs, how they are different from the classicial Core ML neural network types, and what they offer, please see the documentation [here](https://coremltools.readme.io/v5.0/docs/ml-programs)
* Use the `convert_to` argument with the [unified converter API](https://coremltools.readme.io/v5.0/docs/unified-conversion-api) to indicate the model type of the Core ML model.
* `coremltools.convert(..., convert_to=“mlprogram”)` converts to a Core ML model of type ML program.
* `coremltools.convert(..., convert_to=“neuralnetwork”)` converts to a Core ML model of type neural network. “Neural network” is the older Core ML format and continues to be supported. Using just `coremltools.convert(...)` will default to produce a neural network Core ML model.
* When targeting ML program, there is an additional option available to set the compute precision of the Core ML model to either float 32 or float16. The default is float16. Usage example:
* `ct.convert(..., convert_to=“mlprogram”, compute_precision=ct.precision.FLOAT32)` or `ct.convert(..., convert_to=“mlprogram”, compute_precision=ct.precision.FLOAT16)`
* To know more about how this affects the runtime, see the documentation on [Typed execution](https://coremltools.readme.io/v5.0/docs/typed-execution).
* You can save to the new [Model Package format](https://developer.apple.com/documentation/coreml/core_ml_api/updating_a_model_file_to_a_model_package) through the usual coremltool’s `save` method. Simply use `model.save("<model_name>.mlpackage")` instead of the usual `model.save(<"model_name>.mlmodel")`
* Core ML is introducing a new model format called model packages. It’s a container that stores each of a model’s components in its own file, separating out its architecture, weights, and metadata. By separating these components, model packages allow you to easily edit metadata and track changes with source control. They also compile more efficiently, and provide more flexibility for tools which read and write models.
* ML Programs can only be saved in the model package format.
* Adds the `compute_units` parameter to [MLModel](https://apple.github.io/coremltools/source/coremltools.models.html#module-coremltools.models.model) and [coremltools.convert](https://apple.github.io/coremltools/source/coremltools.converters.mil.html#module-coremltools.converters._converters_entry). This matches the `MLComputeUnits` in [Swift](https://developer.apple.com/documentation/coreml/mlcomputeunits) and [Objective-C](https://developer.apple.com/documentation/coreml/mlcomputeunits?language=objc). Use this parameter to specify where your models can run:
* `ALL` - use all compute units available, including the neural engine.
* `CPU_ONLY` - limit the model to only use the CPU.
* `CPU_AND_GPU` - use both the CPU and GPU, but not the neural engine.
* Python 3.9 Support
* Native M1 support for Python 3.8 and 3.9
* Support for TensorFlow 2.5
* Support Torch 1.9.0
* New Torch ops: affine_grid_generator, einsum, expand, grid_sampler, GRU, linear, index_put maximum, minimum, SiLUs, sort, torch_tensor_assign, zeros_like.
* Added flag to skip loading a model during conversion. Useful when converting for new macOS on older macOS:
`ct.convert(....., skip_model_load=True)`
* Various bug fixes, optimizations and additional testing.



Deprecations and Removals

* Caffe converter has been removed. If you are still using the Caffe converter, please use coremltools 4.
* Keras.io and ONNX converters will be deprecated in coremltools 6. Users are recommended to transition to the TensorFlow/PyTorch conversion via the unified converter API.
* Methods, such as `convert_neural_network_weights_to_fp16()`, `convert_neural_network_spec_weights_to_fp16()` , that had been deprecated in coremltools 4, have been removed.
* The `useCPUOnly` parameter for [MLModel](https://apple.github.io/coremltools/source/coremltools.models.html#module-coremltools.models.model) and [MLModel.predict](https://apple.github.io/coremltools/source/coremltools.models.html#coremltools.models.model.MLModel.predict)has been deprecated. Instead, use the `compute_units` parameter for [MLModel](https://apple.github.io/coremltools/source/coremltools.models.html#module-coremltools.models.model) and [coremltools.convert](https://apple.github.io/coremltools/source/coremltools.converters.mil.html#module-coremltools.converters._converters_entry).

Page 3 of 7

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.