Features
1. An [AbstractCallback](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/abstracts.py#L591) class is implemented. Few callback classes are created to print info related to training, to save the model paramaters and apply polyak parameter ensemble model [PrintCallback](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/callbacks.py#L35), [KGESaveCallback](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/callbacks.py#L65), [PPE](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/callbacks.py#L149).
2. Pandas, Modin and Polars can be used as a [backend](https://github.com/dice-group/dice-embeddings/tree/b891508412b318ea50f1af809462506ef7ed667c/core/read_preprocess_save_load_kg). Reading, preprocessing, saving and loading can be done in a parallel fashion.
3. [AccumulateEpochLossCallback](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/callbacks.py#L12)
5. Gradient Accumulation is implemented.
Applications
1. A [function](https://github.com/dice-group/dice-embeddings/blob/main/core/knowledge_graph_embeddings.py#L26) for predicting conjunctive queries over knowledge graph is implemented.
2. A [function](https://github.com/dice-group/dice-embeddings/blob/b891508412b318ea50f1af809462506ef7ed667c/core/knowledge_graph_embeddings.py#L92) to detect missing triples is implemented.