Added a function which loads the downloaded historical data into a `pandas.DataFrame`:
python
df = ft.load_historical_data_as_dataframe()
print(df.tail(), df.shape)
**Note: the date index is not sorted.**
Sample output. Data contains adjusted `closing prices`, rows index are `dates`, column names are `asset ticker symbols`
text
CSCO SVT SDRY BA ... UAA BLK WTB NXT
Date ...
2018-12-25 NaN 1817.5 426.0 NaN ... NaN NaN 4520.0 4014.0
2019-01-01 NaN 1815.5 467.8 NaN ... NaN NaN 4579.0 3991.0
2019-01-21 NaN 1934.5 523.5 NaN ... NaN NaN 4855.0 4726.0
2019-02-18 NaN 1981.5 513.5 NaN ... NaN NaN 4956.0 4858.0
2019-04-19 NaN 1959.0 455.2 NaN ... NaN NaN 4842.0 5774.0
[5 rows x 341 columns] (1305, 341)
Sorting the index
This is not sorted by ascending date. In order to sort it, need to use `sort_index` function from `DataFrame`.
python
df = ft.load_historical_data_as_dataframe()
df.sort_index(inplace=True)
print(df.tail())
text
CSCO SVT SDRY BA ... UAA BLK WTB NXT
Date ...