With this release it becomes possible to train local hierarchical classifiers when the hierarchy has empty levels. For example:
python
from sklearn.linear_model import LogisticRegression
from hiclass import LocalClassifierPerNode
Define data
X_train = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
X_test = [[9, 10], [7, 8], [5, 6], [3, 4], [1, 2]]
Y_train = [
["Bird"],
["Reptile", "Snake"],
["Reptile", "Lizard"],
["Mammal", "Cat"],
["Mammal", "Wolf", "Dog"],
]
Use random forest classifiers for every node
rf = LogisticRegression()
classifier = LocalClassifierPerNode(local_classifier=rf)
Train local classifier per node
classifier.fit(X_train, Y_train)
Predict
predictions = classifier.predict(X_test)
print(predictions)