Changes
- We added [cosine decay for the DINO, BYOL, and MOCO](https://github.com/lightly-ai/lightly/commit/a5c24c2efcc3c65e836105b33573838e723a826a) models.
- We added a [CosineWarmupScheduler class in the benchmarks](https://github.com/lightly-ai/lightly/commit/1c08371b95481efe368dff40ecd3a647c8d6267d).
- We added benchmark results for the [TiCo and VICRegL](https://github.com/lightly-ai/lightly/commit/b4fd2b620f97cf8e2d00fbef280b0c0d61a6bfa3) models.
Models
- [Barlow Twins: Self-Supervised Learning via Redundancy Reduction, 2021](https://arxiv.org/abs/2103.03230)
- [Bootstrap your own latent: A new approach to self-supervised Learning, 2020](https://arxiv.org/abs/2006.07733)
- [DCL: Decoupled Contrastive Learning, 2021](https://arxiv.org/abs/2110.06848)
- [DINO: Emerging Properties in Self-Supervised Vision Transformers, 2021](https://arxiv.org/abs/2104.14294)
- [MAE: Masked Autoencoders Are Scalable Vision Learners, 2021](https://arxiv.org/abs/2111.06377)
- [MSN: Masked Siamese Networks for Label-Efficient Learning, 2022](https://arxiv.org/abs/2204.07141)
- [MoCo: Momentum Contrast for Unsupervised Visual Representation Learning, 2019](https://arxiv.org/abs/1911.05722)
- [NNCLR: Nearest-Neighbor Contrastive Learning of Visual Representations, 2021](https://arxiv.org/pdf/2104.14548.pdf)
- [SimCLR: A Simple Framework for Contrastive Learning of Visual Representations, 2020](https://arxiv.org/abs/2002.05709)
- [SimMIM: A Simple Framework for Masked Image Modeling, 2021](https://arxiv.org/abs/2111.09886)
- [SimSiam: Exploring Simple Siamese Representation Learning, 2020](https://arxiv.org/abs/2011.10566)
- [SMoG: Unsupervised Visual Representation Learning by Synchronous Momentum Grouping, 2022](https://arxiv.org/pdf/2207.06167.pdf)
- [SwAV: Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, M. Caron, 2020](https://arxiv.org/abs/2006.09882)
- [TiCo: Transformation Invariance and Covariance Contrast for Self-Supervised Visual Representation Learning, 2022](https://arxiv.org/pdf/2206.10698.pdf)
- [VICReg: Variance-Invariance-Covariance Regularization for Self-Supervised Learning, Bardes, A. et. al, 2022](https://arxiv.org/abs/2105.04906)
- [VICRegL: VICRegL: Self-Supervised Learning of Local Visual Features, 2022](https://arxiv.org/abs/2210.01571)