------------------------------------------------------------------------------- major: - Update warm start logic to only warm start an arm once
minor: - Implement fix for fitting scalers in Linear policies when variance is too small
2.4.1
------------------------------------------------------------------------------- minor: - Bug fixes in examples - Validate tree parameters of TreeBandit to be compatible with sklearn.tree.DecisionTreeRegressor
2.4.0
------------------------------------------------------------------------------- major: - Implement vectorized functions for non-contextual policies to speed-up prediction for multiple decisions. - Change MAB predict and predict_expectations to allow empty contexts to be specified for non-contextual policies. - Update scaler use in Linear policies so that standard scaler can be fit directly instead of pre-trained scalers. - Change scaler argument from pre-trained `arm_to_scaler` input to a boolean scale flag.
2.3.0
------------------------------------------------------------------------------- major: - New Algorithm: LinGreedy as a learning policy. - Thanks to Yevgeny Popkov for suggesting this algorithm.
------------------------------------------------------------------------------- major: - Modified `predict_expectations`, such that `predict` can use `predict_expectations` directly in all non-contextual learning policies
------------------------------------------------------------------------------- major: - Added warm_start method to MAB, that allows untrained (cold) arms to be warm started based on features of each arm. - Added remove_arm method to MAB to allow arms to be removed from bandit.