Macro-correct

Latest version: v0.0.3

Safety actively analyzes 723144 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 3 of 4

20.73

2.3

3.MFT(Mask-Correct)依旧有效, 不过对于数据量足够的情形提升不明显, 可能也是误纠率升高的一个重要原因;
4.训练数据中也存在文言文数据, 训练好的模型也支持文言文纠错;
5.训练好的模型对"地得的"等高频错误具有较高的识别率和纠错率;

2.2

| model/common_cor_acc| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|

2.1

| model/common_cor_f1| avg| gen_de3| lemon_v2| gen_passage| text_proof| gen_xxqg| faspell| lomo_tet| mcsc_tet| ecspell| sighan2013| sighan2014| sighan2015 |
|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|:-----------------|

1.3

1.指标带common的极为宽松指标, 同开源项目pycorrector的评估指标;
2.指标带strict的极为严格指标, 同开源项目[wangwang110/CSC](https://github.com/wangwang110/CSC);
3.macbert4mdcspell_v1模型为训练使用mdcspell架构+bert的mlm-loss, 但是推理的时候只用bert-mlm;
4.acc_rmrb/acc_xxqg数据集没有错误, 用于评估模型的误纠率(过度纠错);
5.qwen25_1-5b_pycorrector的模型为shibing624/chinese-text-correction-1.5b, 其训练数据包括了lemon_v2/mcsc_tet/ecspell的验证集和测试集, 其他的bert类模型的训练不包括验证集和测试集;



二、重要指标

1.2

测评数据都经过 全角转半角,繁简转化,标点符号标准化等操作;

Page 3 of 4

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.