------------------
* Add n_jobs argument using joblib parallel processing
* Allow `cv` to take the value -1 equivalently to `LeaveOneOut()`
* Introduce the `cv` parameter to get closer to scikit-learn API
* Remove the `n_splits`, `shuffle` and `random_state` parameters
* Simplify the `method` parameter
* Fix typos in documentation and add methods descriptions in sphinx
* Accept alpha parameter as a list or np.ndarray. If alpha is an Iterable, `.predict()` returns a np.ndarray of shape (n_samples, 3, len(alpha)).