Mljar-supervised

Latest version: v1.1.17

Safety actively analyzes 723177 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 8 of 12

0.7.5

Bug fixes
- (216) Raise exception when all models with error
- (234) Fix target with first empty value

0.7.4

Enhancements
- 184 Change Keras+TF Neural Networks to scikit-learn MLP
- 233 Limit staking number of classes and models
- 232 Remove Linear model from Compete mode
- 208 Improve importance computation for large number of columns
- 205 Remove small learning rates for Xgboost

Bug fixes:
- 231 Restricted characters in feature_neams in Xgboost
- 227 Fix strings in golden_features.json - thank you SuryaThiru!
- 215 Assure at least 20 samples (or k_folds) for each class

Docs update:
- 213 Update docs in AutoML - thank you shahules786!

0.7.3

New features :sparkles:
- 176 extended EDA - thanks to shahules786

Bug fixes :bug:
- 201 error in golden features sampling
- 199 bug for float multi-class labels
- 196 add exception for empty data
- 195 set threshold for accuracy metric instead f1
- 194 ensemble should be best model if has more than 1 model
- 193 fixed predict aflter model loading
- 192 update pyarrow
- 191 hide shap warnings
- 190 fix in preprocessing
- 188 fix type in feature selection - thanks to uditswaroopa

0.7.2

Bug fixes :bug:
- 187 fix wrong order in golden features step
- 186 fix `_get_results_path`
- 185 fix models loading
- 184 exception when drop all features during selection
- 182 catch exceptions from model and log to `errors.md`
- 181 remove forbidden characters in EDA
- 177 change docstring to google-stype
- 175 remove `tuning_mode` parameter from `AutoML`

0.7.1

Bug fixes :bug:
- 173 fix bug in shap sampling
- 174 update dtreeviz package

0.7.0

Improvements
- (148) make `AutoML` scikit-learn compatible, thank you spamz23! :clap: :clap: :clap:
- (170, 171 ) improve printouts while training `AutoML`

Page 8 of 12

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.