Minor features and improvements
- `molgraph.applications.proteomics`
- Two different types of peptide models now exist --- one with, and one without, virtual/super nodes. For inclusion of super nodes specify `super_nodes=True` for `PeptideGraphEncoder`, otherwise `False`. Depending on `super_nodes` parameter, `PeptideModel` (aliased `PeptideGNN` or `PepGNN`) will return a Keras Sequential model with an certain readout layer.
- `molgraph.models.interpretability`
- Add `reduce_features` argument (default True) to `GradientActivationMapping`. Specifies whether node feature dimension should be averaged.