Nfnets-pytorch

Latest version: v0.1.3

Safety actively analyzes 706267 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 3 of 3

0.0.1

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Paper: https://arxiv.org/abs/2102.06171.pdf
Original code: https://github.com/deepmind/deepmind-research/tree/master/nfnets

Installation
`pip3 install git+https://github.com/vballoli/nfnets-pytorch`
Usage
WSConv2d

Use `WSConv2d` like any other `torch.nn.Conv2d`.

python
import torch
from torch import nn
from nfnets import WSConv2d

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

SGD - Adaptive Gradient Clipping

Similarly, use `SGD_AGC` like `torch.optim.SGD`
python
import torch
from torch import nn, optim
from nfnets import WSConv2d, SGD_AGC

conv = nn.Conv2d(3,6,3)
w_conv = WSConv2d(3,6,3)

optim = optim.SGD(conv.parameters(), 1e-3)
optim_agc = SGD_AGC(conv.parameters(), 1e-3)


Using it within any PyTorch model

python
import torch
from torch import nn
from torchvision.models import resnet18

from nfnets import replace_conv

model = resnet18()
replace_conv(model)


Docs

Find the docs at [readthedocs](https://nfnets-pytorch.readthedocs.io/en/latest/)

TODO
- [x] WSConv2d
- [x] SGD - Adaptive Gradient Clipping
- [x] Function to automatically replace Convolutions in any module with WSConv2d
- [x] Documentation
- [ ] NFNets
- [ ] NF-ResNets

Cite Original Work

To cite the original paper, use:

article{brock2021high,
author={Andrew Brock and Soham De and Samuel L. Smith and Karen Simonyan},
title={High-Performance Large-Scale Image Recognition Without Normalization},
journal={arXiv preprint arXiv:},
year={2021}
}

Page 3 of 3

© 2025 Safety CLI Cybersecurity Inc. All Rights Reserved.