Nvidia-tensorflow

Latest version: v0.0.1.dev5

Safety actively analyzes 681866 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 6

1.13.0

Major Features and Improvements

* TensorFlow Lite has moved from contrib to core. This means that Python modules are under `tf.lite` and source code is now under `tensorflow/lite` rather than `tensorflow/contrib/lite`.
* TensorFlow GPU binaries are now built against CUDA 10 and TensorRT 5.0.
* Support for Python3.7 on all operating systems.
* Moved NCCL to core.

Behavioral changes

* Disallow conversion of python floating types to uint32/64 (matching behavior of other integer types) in `tf.constant`.
* Make the `gain` argument of convolutional orthogonal initializers (`convolutional_delta_orthogonal`, `convolutional_orthogonal_1D`, `convolutional_orthogonal_2D`, `convolutional_orthogonal_3D`) have consistent behavior with the `tf.initializers.orthogonal` initializer, i.e. scale the output l2-norm by `gain` and NOT by `sqrt(gain)`. (Note that these functions are currently in `tf.contrib` which is not guaranteed backward compatible).

Bug Fixes and Other Changes

* Documentation
* Update the doc with the details about the rounding mode used in
quantize_and_dequantize_v2.
* Clarify that tensorflow::port::InitMain() _should_ be called before
using the TensorFlow library. Programs failing to do this are not
portable to all platforms.
* Deprecations and Symbol renames.
* Removing deprecations for the following endpoints: `tf.acos`,
`tf.acosh`, `tf.add`, `tf.as_string`, `tf.asin`, `tf.asinh`, `tf.atan`,
`tf.atan2`, `tf.atanh`, `tf.cos`, `tf.cosh`, `tf.equal`, `tf.exp`,
`tf.floor`, `tf.greater`, `tf.greater_equal`, `tf.less`,
`tf.less_equal`, `tf.log`, `tf.logp1`, `tf.logical_and`,
`tf.logical_not`, `tf.logical_or`, `tf.maximum`, `tf.minimum`,
`tf.not_equal`, `tf.sin`, `tf.sinh`, `tf.tan`
* Deprecate `tf.data.Dataset.shard`.
* Deprecate `saved_model.loader.load` which is replaced by
`saved_model.load` and `saved_model.main_op`, which will be replaced by
`saved_model.main_op` in V2.
* Deprecate tf.QUANTIZED_DTYPES. The official new symbol is
tf.dtypes.QUANTIZED_DTYPES.
* Update sklearn imports for deprecated packages.
* Deprecate `Variable.count_up_to` and `tf.count_up_to` in favor of
`Dataset.range`.
* Export `confusion_matrix` op as `tf.math.confusion_matrix` instead of
`tf.train.confusion_matrix`.
* Add `tf.dtypes.` endpoint for every constant in dtypes.py. Moving
endpoints in versions.py to corresponding endpoints in `tf.sysconfig.`
and `tf.version.`. Moving all constants under `tf.saved_model`
submodules to `tf.saved_model` module. New endpoints are added in V1 and
V2 but existing endpoint removals are only applied in V2.
* Deprecates behavior where device assignment overrides collocation
constraints inside a collocation context manager.
* Keras & Python API
* Add to Keras functionality analogous to
`tf.register_tensor_conversion_function`.
* Subclassed Keras models can now be saved through
`tf.contrib.saved_model.save_keras_model`.
* `LinearOperator.matmul` now returns a new `LinearOperator`.
* New ops and improved op functionality
* Add a Nearest Neighbor Resize op.
* Add an `ignore_unknown` argument to `parse_values` which suppresses
ValueError for unknown hyperparameter types. Such * Add
`tf.linalg.matvec` convenience function.
* `tf.einsum()`raises `ValueError` for unsupported equations like
`"ii->"`.
* Add DCT-I and IDCT-I in `tf.signal.dct` and `tf.signal.idct`.
* Add LU decomposition op.
* Add quantile loss to gradient boosted trees in estimator.
* Add `round_mode` to `QuantizeAndDequantizeV2` op to select rounding
algorithm.
* Add `unicode_encode`, `unicode_decode`, `unicode_decode_with_offsets`,
`unicode_split`, `unicode_split_with_offset`, and `unicode_transcode`
ops. Amongst other things, this Op adds the ability to encode, decode,
and transcode a variety of input text encoding formats into the main
Unicode encodings (UTF-8, UTF-16-BE, UTF-32-BE)
* Add "unit" attribute to the substr op, which allows obtaining the
substring of a string containing unicode characters.
* Broadcasting support for Ragged Tensors.
* `SpaceToDepth` supports uint8 data type.
* Support multi-label quantile regression in estimator.
* We now use "div" as the default partition_strategy in
`tf.nn.safe_embedding_lookup_sparse`, `tf.nn.sampled_softmax` and
`tf.nn.nce_loss`. hyperparameter are ignored.
* Performance
* Improve performance of GPU cumsum/cumprod by up to 300x.
* Added support for weight decay in most TPU embedding optimizers,
including AdamW and MomentumW.
* TensorFlow 2.0 Development
* Add a command line tool to convert to TF2.0, tf_upgrade_v2
* Merge `tf.spectral` into `tf.signal` for TensorFlow 2.0.
* Change the default recurrent activation function for LSTM from
'hard_sigmoid' to 'sigmoid' in 2.0. Historically recurrent activation is
'hard_sigmoid' since it is fast than 'sigmoid'. With new unified backend
between CPU and GPU mode, since the CuDNN kernel is using sigmoid, we
change the default for CPU mode to sigmoid as well. With that, the
default LSTM will be compatible with both CPU and GPU kernel. This will
enable user with GPU to use CuDNN kernel by default and get a 10x
performance boost in training. Note that this is checkpoint breaking
change. If user want to use their 1.x pre-trained checkpoint, please
construct the layer with LSTM(recurrent_activation='hard_sigmoid') to
fallback to 1.x behavior.
* TensorFlow Lite
* Move from `tensorflow/contrib/lite` to `tensorflow/lite`.
* Add experimental Java API for injecting TensorFlow Lite delegates
* Add support for strings in TensorFlow Lite Java API.
* `tf.contrib`:
* Add Apache Ignite Filesystem plugin to support accessing Apache IGFS.
* Dropout now takes `rate` argument, `keep_prob` is deprecated.
* Estimator occurrences references `tf.contrib.estimator` were changed to
`tf.estimator`:
* `tf.contrib.estimator.BaselineEstimator` with
`tf.estimator.BaselineEstimator`
* `tf.contrib.estimator.DNNLinearCombinedEstimator` with
`tf.estimator.DNNLinearCombinedEstimator`
* `tf.contrib.estimator.DNNEstimator` with `tf.estimator.DNNEstimator`
* `tf.contrib.estimator.LinearEstimator` with
`tf.estimator.LinearEstimator`
* `tf.contrib.estimator.InMemoryEvaluatorHook` and
tf.estimator.experimental.InMemoryEvaluatorHook`.
* `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
`tf.estimator.experimental.make_stop_at_checkpoint_step_hook`.
* Expose `tf.distribute.Strategy as the new name for
tf.contrib.distribute.DistributionStrategy.
* Migrate linear optimizer from contrib to core.
* Move `tf.contrib.signal` to `tf.signal` (preserving aliases in
tf.contrib.signal).
* Users of `tf.contrib.estimator.export_all_saved_models` and related
should switch to
`tf.estimator.Estimator.experimental_export_all_saved_models`.
* tf.data:
* Add `tf.data.experimental.StatsOptions()`, to configure options to
collect statistics from `tf.data.Dataset` pipeline using
`StatsAggregator`. Add nested option, `experimental_stats` (which takes
a `tf.data.experimen tal.StatsOptions` object), to `tf.data.Options`.
Deprecates `tf.data.experimental.set_stats_agregator`.
* Performance optimizations:
* Add `tf.data.experimental.OptimizationOptions()`, to configure options
to enable `tf.data` performance optimizations. Add nested option,
`experimental_optimization` (which takes a
`tf.data.experimental.OptimizationOptions` object), to
`tf.data.Options`. Remove performance optimization options from
`tf.data.Options`, and add them under
`tf.data.experimental.OptimizationOptions` instead.
* Enable `map_and_batch_fusion` and `noop_elimination` optimizations by
default. They can be disabled by configuring
`tf.data.experimental.OptimizationOptions` to set `map_and_batch =
False` or `noop_elimination = False` respectively. To disable all
default optimizations, set `apply_default_optimizations = False`.
* Support parallel map in `map_and_filter_fusion`.
* Disable static optimizations for input pipelines that use non-resource
`tf.Variable`s.
* Add NUMA-aware MapAndBatch dataset.
* Deprecate `tf.data.Dataset.make_one_shot_iterator()` in V1, removed it
from V2, and added tf.compat.v1.data.make_one_shot_iterator()`.
* Deprecate `tf.data.Dataset.make_initializable_iterator()` in V1, removed
it from V2, and added `tf.compat.v1.data.make_initializable_iterator()`.
* Enable nested dataset support in core `tf.data` transformations.
* For `tf.data.Dataset` implementers: Added
`tf.data.Dataset._element_structured property` to replace
`Dataset.output_{types,shapes,classes}`.
* Make `num_parallel_calls` of `tf.data.Dataset.interleave` and
`tf.data.Dataset.map` work in Eager mode.
* Toolchains
* Fixed OpenSSL compatibility by avoiding `EVP_MD_CTX_destroy`.
* Added bounds checking to printing deprecation warnings.
* Upgraded CUDA dependency to 10.0
* To build with Android NDK r14b, add "include <linux/compiler.h>" to
android-ndk-r14b/platforms/android-14/arch-*/usr/include/linux/futex.h
* Removed `:android_tensorflow_lib_selective_registration*` targets, use
`:android_tensorflow_lib_lite*` targets instead.
* XLA
* Move `RoundToEven` function to xla/client/lib/math.h.
* A new environment variable `TF_XLA_DEBUG_OPTIONS_PASSTHROUGH` set to "1"
or "true" allows the debug options passed within an XRTCompile op to be
passed directly to the XLA compilation backend. If such variable is not
set (service side), only a restricted set will be passed through.
* Allow the XRTCompile op to return the ProgramShape resulted form the XLA
compilation as a second return argument.
* XLA HLO graphs can now be rendered as SVG/HTML.
* Estimator
* Replace all occurences of `tf.contrib.estimator.BaselineEstimator` with
`tf.estimator.BaselineEstimator`
* Replace all occurences of
`tf.contrib.estimator.DNNLinearCombinedEstimator` with
`tf.estimator.DNNLinearCombinedEstimator`
* Replace all occurrences of `tf.contrib.estimator.DNNEstimator` with
`tf.estimator.DNNEstimator`
* Replace all occurrences of `tf.contrib.estimator.LinearEstimator` with
`tf.estimator.LinearEstimator`
* Users of `tf.contrib.estimator.export_all_saved_models` and related
should switch to
`tf.estimator.Estimator.experimental_export_all_saved_models`.
* Update `regression_head` to the new Head API for Canned Estimator V2.
* Switch `multi_class_head` to Head API for Canned Estimator V2.
* Replace all occurences of `tf.contrib.estimator.InMemoryEvaluatorHook`
and `tf.contrib.estimator.make_stop_at_checkpoint_step_hook` with
`tf.estimator.experimental.InMemoryEvaluatorHook` and
`tf.estimator.experimental.make_stop_at_checkpoint_step_hook`
* Migrate linear optimizer from contrib to core.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Abhinav Upadhyay, Ag Ramesh, akikaaa, Alexis Louis, Anders Huss, Andreas Madsen, Andrew Banchich, Andy Craze, Anton Dmitriev, Artem Malykh, Avijit-Nervana, Balint Cristian, Benjamin Tan Wei Hao, Bhavani Subramanian, Brendan Finan, Brian Nemsick, Bryan Cutler, By Shen, Cao Zongyan, Castiel, Chris Antaki, Christian Goll, Cibifang, Clayne Robison, Codrut Grosu, Cong Xu, Dalmo Cirne, Daniel Hunter, Dougal J. Sutherland, Edvard Fagerholm, EFanZh, Erik Smistad, Evgeniy Polyakov, Feiyang Chen, franklin5, Fred Reiss, Gautam, gehring, Geoffrey Irving, George Sterpu, Gitea, Grzegorz George Pawelczak, Guozhong Zhuang, himkt, Hoeseong Kim, Huan Li (李卓桓), HuiyangFei, hyunyoung, Isaac Burbank, jackonan, Jacky Ko, Jason Furmanek, Jason Zaman, Javier Luraschi, Jiang,Zhoulong, joaak, John Lin, Jonathan Wyatt Hoech, josephyearsley, Josh Gordon, Julian Niedermeier, Karl Lessard, Keno Fischer, lanhin, Leon Graser, leondgarse, Li, Guizi, Li, Yiqiang, lxl910915, Mahmoud Abuzaina, manhyuk, Marcela Morales Quispe, margaretmz, Matt Conley, Max Pumperla, mbhuiyan, mdfaijul, Meng, Peng, Michael, Michael Gielda, mrTsjolder, Muhammad Wildan, neargye, Nehal J Wani, NEWPLAN, Niranjan Hasabnis, Nutti, olicht, Pan Daoxin, Pedro Monreal, Peng Yu, pillarpond, Pooya Davoodi, qiezi, Rholais Lii, Richard Yu, Rin Arakaki, Roger Iyengar, sahilbadyal, Sami Kama, Sandip Giri, Scott Leishman, Serge Panev, Seunghoon Park, Shafi Dayatar, shengfuintel, Shimin Guo, Siju, silent567, Stefan Dyulgerov, steven, Tao Wei, Thor Johnsen, Tingbo Lu, tomguluson92, Tongxuan Liu, Trevor Morris, Ubuntu, Vadim Borisov, vanderliang, wangsiyu, Wen Yun, Wen-Heng (Jack) Chung, wenxizhu, William D. Irons, Xiaoming (Jason) Cui, Yan Facai (颜发才), Yanbo Liang, Yaniv Blumenfeld, Yash Gaurkar, Yicheng Fan, Yong Tang, Yongjoon Lee, Yuan (Terry) Tang, Yuxin Wu, zldrobit

1.12.3

Bug Fixes and Other Changes

* Updates `png_archive` dependency to 1.6.37 to not be affected by
CVE-2019-7317, CVE-2018-13785, and CVE-2018-14048.
* Updates `sqlite` depenency to 3.28.0 to not be affected by CVE-2018-20506,
CVE-2018-20346, and CVE-2018-20505.

1.12.2

Bug Fixes and Other Changes

* Fixes a potential security vulnerability where carefully crafted GIF images
can produce a null pointer dereference during decoding.

1.12.0

Major Features and Improvements

* Keras models can now be directly exported to the SavedModel
format(`tf.contrib.saved_model.save_keras_model()`) and used with Tensorflow
Serving.
* Keras models now support evaluating with a `tf.data.Dataset`.
* TensorFlow binaries are built with XLA support linked in by default.
* Ignite Dataset added to contrib/ignite that allows to work with Apache
Ignite.

Bug Fixes and Other Changes

* tf.data:
* tf.data users can now represent, get, and set options of TensorFlow
input pipelines using `tf.data.Options()`, `tf.data.Dataset.options()`,
and `tf.data.Dataset.with_options()` respectively.
* New `tf.data.Dataset.reduce()` API allows users to reduce a finite
dataset to a single element using a user-provided reduce function.
* New `tf.data.Dataset.window()` API allows users to create finite windows
of input dataset; when combined with the `tf.data.Dataset.reduce()` API,
this allows users to implement customized batching.
* All C++ code moves to the `tensorflow::data` namespace.
* Add support for `num_parallel_calls` to `tf.data.Dataset.interleave`.
* `tf.contrib`:
* Remove `tf.contrib.linalg`. `tf.linalg` should be used instead.
* Replace any calls to `tf.contrib.get_signature_def_by_key(metagraph_def,
signature_def_key)` with
`meta_graph_def.signature_def[signature_def_key]`. Catching a ValueError
exception thrown by `tf.contrib.get_signature_def_by_key` should be
replaced by catching a KeyError exception.
* `tf.contrib.data`
* Deprecate, and replace by tf.data.experimental.
* Other:
* Instead of jemalloc, revert back to using system malloc since it
simplifies build and has comparable performance.
* Remove integer types from `tf.nn.softplus` and `tf.nn.softsign` OpDefs.
This is a bugfix; these ops were never meant to support integers.
* Allow subslicing Tensors with a single dimension.
* Add option to calculate string length in Unicode characters.
* Add functionality to SubSlice a tensor.
* Add searchsorted (ie lower/upper_bound) op.
* Add model explainability to Boosted Trees.
* Support negative positions for tf.substr.
* There was previously a bug in the bijector_impl where the
_reduce_jacobian_det_over_event does not handle scalar ILDJ
implementations properly.
* In tf eager execution, allow re-entering a GradientTape context.
* Add tf_api_version flag. If --define=tf_api_version=2 flag is passed in,
then bazel will build TensorFlow API version 2.0. Note that TensorFlow
2.0 is under active development and has no guarantees at this point.
* Add additional compression options to TfRecordWriter.
* Performance improvements for regex full match operations.
* Replace tf.GraphKeys.VARIABLES with `tf.GraphKeys.GLOBAL_VARIABLES`.
* Remove unused dynamic learning rate support.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

(David) Siu-Kei Muk, Ag Ramesh, Anton Dmitriev, Artem Sobolev, Avijit-Nervana,
Bairen Yi, Bruno Goncalves, By Shen, candy.dc, Cheng Chen, Clayne Robison,
coder3101, Dao Zhang, Elms, Fei Hu, feiquan, Geoffrey Irving, Guozhong Zhuang,
hellcom, Hoeseong Kim, imsheridan, Jason Furmanek, Jason Zaman, Jenny Sahng,
jiefangxuanyan, Johannes Bannhofer, Jonathan Homer, Koan-Sin Tan, kouml, Loo
Rong Jie, Lukas Geiger, manipopopo, Ming Li, Moritz KröGer, Naurril, Niranjan
Hasabnis, Pan Daoxin, Peng Yu, pengwa, rasmi, Roger Xin, Roland Fernandez, Sami
Kama, Samuel Matzek, Sangjung Woo, Sergei Lebedev, Sergii Khomenko, shaohua,
Shaohua Zhang, Shujian2015, Sunitha Kambhampati, tomguluson92, ViníCius Camargo,
wangsiyu, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Xin Jin, Yan
Facai (颜发才), Yanbo Liang, Yash Katariya, Yong Tang, 在原佐为

1.11.0

Major Features and Improvements

* Nvidia GPU:
* Prebuilt binaries are now (as of TensorFlow 1.11) built against cuDNN
7.2 and TensorRT 4. See updated install guides:
[Installing TensorFlow on Ubuntu](https://www.tensorflow.org/install/install_linux#tensorflow_gpu_support)
* Google Cloud TPU:
* Experimental tf.data integration for Keras on Google Cloud TPUs.
* Experimental / preview support for eager execution on Google Cloud TPUs.
* DistributionStrategy:
* Add multi-GPU DistributionStrategy support in tf.keras. Users can now
use `fit`, `evaluate` and `predict` to distribute their model on
multiple GPUs.
* Add multi-worker DistributionStrategy and standalone client support in
Estimator. See
[README](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/distribute)
for more details.
* Add C, C++, and Python functions for querying kernels.

Breaking Changes

* Keras:
* The default values for tf.keras `RandomUniform`, `RandomNormal`, and `TruncatedNormal` initializers have been changed to match those in external Keras.
* Breaking change: `model.get_config()` on a Sequential model now returns a config dictionary (consistent with other Model instances) instead of a list of configs for the underlying layers.

Bug Fixes and Other Changes

* C++:
* Changed the signature of SessionFactory::NewSession so that it can
return a meaningful error message on failure.
* tf.data:
* Remove `num_parallel_parser_calls` argument from
`tf.contrib.data.make_csv_dataset()`. [tf.data] Remove
`num_parallel_parser_calls` argument from
`tf.contrib.data.make_csv_dataset()`.
* `tf.data.Dataset.list_files()` raises an exception at initialization
time if the argument matches no files.
* Renamed BigTable class to BigtableTable for clarity
* Document use of the Cloud Bigtable API
* Add `tf.contrib.data.reduce_dataset` which can be used to reduce a
dataset to a single element.
* Generalization of `tf.contrib.data.sliding_window_batch`.
* INC:
* Runtime improvements to triangular solve.
* `tf.contrib`:
* Add an `implementation` argument to `tf.keras.layers.LocallyConnected2D`
and `tf.keras.layers.LocallyConnected1D`. The new mode
(`implementation=2`) performs forward pass as a single dense matrix
multiplication, allowing dramatic speedups in certain scenarios (but
worse performance in others - see docstring). The option also allows to
use `padding=same`.
* Add documentation clarifying the differences between tf.fill and
tf.constant.
* Add experimental IndexedDatasets.
* Add selective registration target using the lite proto runtime.
* Add simple Tensor and DataType classes to TensorFlow Lite Java
* Add support for bitcasting to/from uint32 and uint64.
* Added a subclass of Estimator that can be created from a SavedModel
(SavedModelEstimator).
* Adds leaf index modes as an argument.
* Allow a different output shape from the input in
tf.contrib.image.transform.
* Change the state_size order of the StackedRNNCell to be natural order.
To keep the existing behavior, user can add reverse_state_order=True
when constructing the StackedRNNCells.
* Deprecate self.test_session() in favor of self.session() or
self.cached_session().
* Directly import tensor.proto.h (the transitive import will be removed
from tensor.h soon).
* Estimator.train() now supports tf.contrib.summary.\* summaries out of
the box; each call to .train() will now create a separate tfevents file
rather than re-using a shared one.
* Fix FTRL L2-shrinkage behavior: the gradient from the L2 shrinkage term
should not end up in the accumulator.
* Fix toco compilation/execution on Windows.
* GoogleZoneProvider class added to detect which Google Cloud Engine zone
tensorflow is running in.
* It is now safe to call any of the C API's TF_Delete\* functions on
nullptr.
* Log some errors on Android to logcat.
* Match FakeQuant numerics in TFLite to improve accuracy of TFLite
quantized inference models.
* Optional bucket location check for the GCS Filesystem.
* Performance enhancements for StringSplitOp & StringSplitV2Op.
* Performance improvements for regex replace operations.
* TFRecordWriter now raises an error if .write() fails.
* TPU: More helpful error messages in TPUClusterResolvers.
* The legacy_init_op argument to SavedModelBuilder methods for adding
MetaGraphs has been deprecated. Please use the equivalent main_op
argument instead. As part of this, we now explicitly check for a single
main_op or legacy_init_op at the time of SavedModel building, whereas
the check on main_op was previously only done at load time.
* The protocol used for Estimator training is now configurable in
RunConfig.
* Triangular solve performance improvements.
* Unify RNN cell interface between TF and Keras. Add new
get_initial_state() to Keras and TF RNN cell, which will use to replace
the existing zero_state() method.
* Update initialization of variables in Keras.
* Updates to "constrained_optimization" in tensorflow/contrib.
* boosted trees: adding pruning mode.
* tf.train.Checkpoint does not delete old checkpoints by default.
* tfdbg: Limit the total disk space occupied by dumped tensor data to 100
GBytes. Add environment variable `TFDBG_DISK_BYTES_LIMIT` to allow
adjustment of this upper limit.

Thanks to our Contributors

This release contains contributions from many people at Google, as well as:

Aapeli, adoda, Ag Ramesh, Amogh Mannekote, Andrew Gibiansky, Andy Craze, Anirudh Koul, Aurelien Geron, Avijit, Avijit-Nervana, Ben, Benjamin H. Myara, bhack, Brett Koonce, Cao Zongyan, cbockman, cheerss, Chikanaga Tomoyuki, Clayne Robison, cosine0, Cui Wei, Dan J, David, David Norman, Dmitry Klimenkov, Eliel Hojman, Florian Courtial, fo40225, formath, Geoffrey Irving, gracehoney, Grzegorz Pawelczak, Guoliang Hua, Guozhong Zhuang, Herman Zvonimir DošIlović, HuiyangFei, Jacker, Jan HüNnemeyer, Jason Taylor, Jason Zaman, Jesse, Jiang,Zhoulong, Jiawei Zhang, Jie, Joe Yearsley, Johannes Schmitz, Jon Perl, Jon Triebenbach, Jonathan, Jonathan Hseu, Jongmin Park, Justin Shenk, karlkubx.ca, Kate Hodesdon, Kb Sriram, Keishi Hattori, Kenneth Blomqvist, Koan-Sin Tan, Li Liangbin, Li, Yiqiang, Loo Rong Jie, Madiyar, Mahmoud Abuzaina, Mark Ryan, Matt Dodge, mbhuiyan, melvinljy96, Miguel Mota, Nafis Sadat, Nathan Luehr, naurril, Nehal J Wani, Niall Moran, Niranjan Hasabnis, Nishidha Panpaliya, npow, olicht, Pei Zhang, Peng Wang (Simpeng), Peng Yu, Philipp Jund, Pradeep Banavara, Pratik Kalshetti, qwertWZ, Rakesh Chada, Randy West, Ray Kim, Rholais Lii, Robin Richtsfeld, Rodrigo Silveira, Ruizhi, Santosh Kumar, Seb Bro, Sergei Lebedev, sfujiwara, Shaba Abhiram, Shashi, SneakyFish5, Soila Kavulya, Stefan Dyulgerov, Steven Winston, Sunitha Kambhampati, Surry Shome, Taehoon Lee, Thor Johnsen, Tristan Rice, TShapinsky, tucan, tucan9389, Vicente Reyes, Vilmar-Hillow, Vitaly Lavrukhin, wangershi, weidan.kong, weidankong, Wen-Heng (Jack) Chung, William D. Irons, Wim Glenn, XFeiF, Yan Facai (颜发才), Yanbo Liang, Yong Tang, Yoshihiro Yamazaki, Yuan (Terry) Tang, Yuan, Man, zhaoyongke, ÁRon
Ricardo Perez-Lopez, 张天启, 张晓飞

1.10.1

Bug Fixes and Other Changes

* `tf.keras`:
* Fixing keras on Cloud TPUs. No new binaries will be built for Windows.

Page 2 of 6

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.