Onnxtr

Latest version: v0.6.0

Safety actively analyzes 688694 Python packages for vulnerabilities to keep your Python projects secure.

Scan your dependencies

Page 2 of 3

0.3.1

<p align="center">
<img src="https://github.com/felixdittrich92/OnnxTR/blob/main/docs/images/logo.jpg" width="50%">
</p>


What's Changed

- Minor configuration fix for CUDAExecutionProvider
- Adjusted default batch sizes
- avoid init EngineConfig multiple times

**Full Changelog**: https://github.com/felixdittrich92/OnnxTR/compare/v0.3.0...v0.3.1

0.3.0

<p align="center">
<img src="https://github.com/felixdittrich92/OnnxTR/blob/main/docs/images/logo.jpg" width="50%">
</p>


What's Changed

- Sync with current docTR state
- Added advanced options to configure the underlying execution engine
- Added new `db_mobilenet_v3_large` converted models (fp32 & 8bit)

Advanced engine configuration

python
from onnxruntime import SessionOptions

from onnxtr.models import ocr_predictor, EngineConfig

general_options = SessionOptions() For configuartion options see: https://onnxruntime.ai/docs/api/python/api_summary.html#sessionoptions
general_options.enable_cpu_mem_arena = False

NOTE: The following would force to run only on the GPU if no GPU is available it will raise an error
List of strings e.g. ["CUDAExecutionProvider", "CPUExecutionProvider"] or a list of tuples with the provider and its options e.g.
[("CUDAExecutionProvider", {"device_id": 0}), ("CPUExecutionProvider", {"arena_extend_strategy": "kSameAsRequested"})]
providers = [("CUDAExecutionProvider", {"device_id": 0})] For available providers see: https://onnxruntime.ai/docs/execution-providers/

engine_config = EngineConfig(
session_options=general_options,
providers=providers
)
We use the default predictor with the custom engine configuration
NOTE: You can define different engine configurations for detection, recognition and classification depending on your needs
predictor = ocr_predictor(
det_engine_cfg=engine_config,
reco_engine_cfg=engine_config,
clf_engine_cfg=engine_config
)





**Full Changelog**: https://github.com/felixdittrich92/OnnxTR/compare/v0.2.0...v0.3.0

0.2.0

<p align="center">
<img src="https://github.com/felixdittrich92/OnnxTR/blob/main/docs/images/logo.jpg" width="50%">
</p>


What's Changed

- Added 8-Bit quantized models
- Added Dockerfile and CI for CPU/GPU Usage

8-Bit quantized models

8-Bit quantized variants of all models was added (expect: the FAST models - which are already reparameterized)

python3
from onnxtr.models import ocr_predictor, detection_predictor, recognition_predictor

predictor = ocr_predictor(det_arch="db_resnet50", reco_arch="crnn_vgg16_bn", load_in_8_bit=True)

det_predictor = detection_predictor("db_resnet50", load_in_8_bit=True)
reco_predictor = recognition_predictor("parseq", load_in_8_bit=True)


- CPU benchmarks:

|Library |FUNSD (199 pages) |CORD (900 pages) |
|--------------------------------|-------------------------------|-------------------------------|
|docTR (CPU) - v0.8.1 | ~1.29s / Page | ~0.60s / Page |
|OnnxTR (CPU) - v0.1.2 | ~0.57s / Page | ~0.25s / Page |
|OnnxTR (CPU) 8-bit - v0.1.2 | ~0.38s / Page | ~0.14s / Page |
|EasyOCR (CPU) - v1.7.1 | ~1.96s / Page | ~1.75s / Page |
|PyTesseract (CPU) - v0.3.10 | ~0.50s / Page | ~0.52s / Page |
|Surya (line) (CPU) - v0.4.4 | ~48.76s / Page | ~35.49s / Page |

0.1.2

This release:

- Fix some typos
- update Readme and add a first minimal benchmark
- clean build dependencies

0.1.1

This release:

- split dependencies in cpu and gpu

0.1.0

This release:

- initial release
- support for TF and PT exported models
- base functionality from docTR

Page 2 of 3

© 2024 Safety CLI Cybersecurity Inc. All Rights Reserved.