新特性
* 全新发布2.0版本,全面升级至动态图,支持20+分割模型,4个骨干网络,5个数据集,9种Loss:
* 分割模型:ANN、BiSeNetV2、DANet、DeeplabV3、DeeplabV3+、FCN、FastSCNN、Gated-scnn、GCNet、HarDNet、OCRNet、PSPNet、UNet、UNet++、U<sup>2</sup>Net、Attention UNet、Decoupled SegNet、EMANet、DNLNet、ISANet
* 骨干网络:ResNet, HRNet, MobileNetV3, Xception
* 数据集:Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
* Loss:CrossEntropy Loss、BootstrappedCrossEntropy Loss、Dice Loss、BCE Loss、OhemCrossEntropyLoss、RelaxBoundaryLoss、OhemEdgeAttentionLoss、Lovasz Hinge Loss、Lovasz Softmax Loss
* 提供基于Cityscapes和Pascal Voc数据集的高质量预训练模型 50+
* 支持多卡GPU并行评估,提供了高效的指标计算功能。支持多尺度评估/翻转评估/滑动窗口评估等多种评估方式。
* 支持XPU模型训练,包括DeepLabv3、HRNet、UNet。
* 开源了基于Hierarchical Multi-Scale Attention结构的语义分割模型,在Cityscapes验证集上达到87% mIoU。
* 动态图模式支持模型在线量化、剪枝等模型压缩功能。
* 动态图下支持模型动转静,实现高性能部署。
New Features
* We newly released version 2.0 which has been fully upgraded to dynamic graphics. It supports more than 20 segmentation models, 4 backbone networks, , 5 datasets and 9 losses:
* Segmentation models: ANN, BiSeNetV2, DANet, DeeplabV3, DeeplabV3+, FCN, FastSCNN, Gated-scnn, GCNet, HarDNet, OCRNet, PSPNet, UNet, UNet++, U<sup>2</sup>Net, Attention UNet, Decoupled SegNet, EMANet, DNLNet, ISANet
* Backbone networks: ResNet, HRNet, MobileNetV3, and Xception
* Datasets: Cityscapes, ADE20K, Pascal VOC, Pascal Context, COCO Stuff
* Losses: CrossEntropy Loss, BootstrappedCrossEntropy Loss, Dice Loss, BCE Loss, OhemCrossEntropyLoss, RelaxBoundaryLoss, OhemEdgeAttentionLoss, Lovasz Hinge Loss, Lovasz Softmax Loss
* We provide more than 50 high quality pre-trained models based on Cityscapes and Pascal Voc datasets.
* The new version support multi-card GPU parallel evaluation for more efficient metrics calculation. It also support multiple evaluation methods such as multi-scale evaluation/flip evaluation/sliding window evaluation.
* XPU model training including DeepLabv3, HRNet, UNet, is available now.
* We open source a semantic segmentation model based on the Hierarchical Multi-Scale Attention structure, and it reached 87% mIoU on the Cityscapes validation set.
* The dynamic graph mode supports model compression functions such as online quantification and pruning.
* The dynamic graph mode supports model export for high-performance deployment.