<h3>New features since last release</h3>
<h4>New machine learning integrations</h4>
* PennyLane QNodes can now be converted into Keras layers, allowing for creation of quantum and hybrid models using the Keras API. [(529)](https://github.com/XanaduAI/pennylane/pull/529)
A PennyLane QNode can be converted into a Keras layer using the `KerasLayer` class:
python
from pennylane.qnn import KerasLayer
qml.qnode(dev)
def circuit(inputs, weights_0, weight_1):
define the circuit
...
weight_shapes = {"weights_0": 3, "weight_1": 1}
qlayer = qml.qnn.KerasLayer(circuit, weight_shapes, output_dim=2)
A hybrid model can then be easily constructed:
python
model = tf.keras.models.Sequential([qlayer, tf.keras.layers.Dense(2)])
* Added a new type of QNode, `qml.qnodes.PassthruQNode`. For simulators which are coded in an external library which supports automatic differentiation, PennyLane will treat a PassthruQNode as a "white box", and rely on the external library to directly provide gradients via backpropagation. This can be more efficient than the using parameter-shift rule for a large number of parameters. [(488)](https://github.com/XanaduAI/pennylane/pull/488)
Currently this behaviour is supported by PennyLane's `default.tensor.tf` device backend, compatible with the `'tf'` interface using TensorFlow 2:
python
dev = qml.device('default.tensor.tf', wires=2)
qml.qnode(dev, diff_method="backprop")
def circuit(params):
qml.RX(params[0], wires=0)
qml.RX(params[1], wires=1)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
qnode = PassthruQNode(circuit, dev)
params = tf.Variable([0.3, 0.1])
with tf.GradientTape() as tape:
tape.watch(params)
res = qnode(params)
grad = tape.gradient(res, params)
<h4>New optimizers</h4>
* Added the `qml.RotosolveOptimizer`, a gradient-free optimizer that minimizes the quantum function by updating each parameter, one-by-one, via a closed-form expression while keeping other parameters fixed.
[(636)](https://github.com/XanaduAI/pennylane/pull/636) [(#539)](https://github.com/XanaduAI/pennylane/pull/539)
* Added the `qml.RotoselectOptimizer`, which uses Rotosolve to minimizes a quantum function with respect to both the
rotation operations applied and the rotation parameters. [(636)](https://github.com/XanaduAI/pennylane/pull/636) [(#539)](https://github.com/XanaduAI/pennylane/pull/539)
For example, given a quantum function `f` that accepts parameters `x` and a list of corresponding rotation operations `generators`, the Rotoselect optimizer will, at each step, update both the parameter values and the list of rotation gates to minimize the loss:
pycon
>>> opt = qml.optimize.RotoselectOptimizer()
>>> x = [0.3, 0.7]
>>> generators = [qml.RX, qml.RY]
>>> for _ in range(100):
... x, generators = opt.step(f, x, generators)
<h4>New operations</h4>
* Added the `PauliRot` gate, which performs an arbitrary Pauli rotation on multiple qubits, and the `MultiRZ` gate,
which performs a rotation generated by a tensor product of Pauli Z operators. [(559)](https://github.com/XanaduAI/pennylane/pull/559)
python
dev = qml.device('default.qubit', wires=4)
qml.qnode(dev)
def circuit(angle):
qml.PauliRot(angle, "IXYZ", wires=[0, 1, 2, 3])
return [qml.expval(qml.PauliZ(wire)) for wire in [0, 1, 2, 3]]
pycon
>>> circuit(0.4)
[1. 0.92106099 0.92106099 1. ]
>>> print(circuit.draw())
0: ──╭RI(0.4)──┤ ⟨Z⟩
1: ──├RX(0.4)──┤ ⟨Z⟩
2: ──├RY(0.4)──┤ ⟨Z⟩
3: ──╰RZ(0.4)──┤ ⟨Z⟩
If the `PauliRot` gate is not supported on the target device, it will be decomposed into `Hadamard`, `RX` and `MultiRZ` gates. Note that identity gates in the Pauli word result in untouched wires:
pycon
>>> print(circuit.draw())
0: ───────────────────────────────────┤ ⟨Z⟩
1: ──H──────────╭RZ(0.4)──H───────────┤ ⟨Z⟩
2: ──RX(1.571)──├RZ(0.4)──RX(-1.571)──┤ ⟨Z⟩
3: ─────────────╰RZ(0.4)──────────────┤ ⟨Z⟩
If the `MultiRZ` gate is not supported, it will be decomposed into
`CNOT` and `RZ` gates:
pycon
>>> print(circuit.draw())
0: ──────────────────────────────────────────────────┤ ⟨Z⟩
1: ──H──────────────╭X──RZ(0.4)──╭X──────H───────────┤ ⟨Z⟩
2: ──RX(1.571)──╭X──╰C───────────╰C──╭X──RX(-1.571)──┤ ⟨Z⟩
3: ─────────────╰C───────────────────╰C──────────────┤ ⟨Z⟩
* PennyLane now provides `DiagonalQubitUnitary` for diagonal gates, that are e.g., encountered in IQP circuits. These kinds of gates can be evaluated much faster on a simulator device. [(567)](https://github.com/XanaduAI/pennylane/pull/567)
The gate can be used, for example, to efficiently simulate oracles:
python
dev = qml.device('default.qubit', wires=3)
Function as a bitstring
f = np.array([1, 0, 0, 1, 1, 0, 1, 0])
qml.qnode(dev)
def circuit(weights1, weights2):
qml.templates.StronglyEntanglingLayers(weights1, wires=[0, 1, 2])
Implements the function as a phase-kickback oracle
qml.DiagonalQubitUnitary((-1)**f, wires=[0, 1, 2])
qml.templates.StronglyEntanglingLayers(weights2, wires=[0, 1, 2])
return [qml.expval(qml.PauliZ(w)) for w in range(3)]
* Added the `TensorN` CVObservable that can represent the tensor product of the `NumberOperator` on photonic backends. [(608)](https://github.com/XanaduAI/pennylane/pull/608)
<h4>New templates</h4>
* Added the `ArbitraryUnitary` and `ArbitraryStatePreparation` templates, which use `PauliRot` gates to perform an arbitrary unitary and prepare an arbitrary basis state with the minimal number of parameters. [(590)](https://github.com/XanaduAI/pennylane/pull/590)
python
dev = qml.device('default.qubit', wires=3)
qml.qnode(dev)
def circuit(weights1, weights2):
qml.templates.ArbitraryStatePreparation(weights1, wires=[0, 1, 2])
qml.templates.ArbitraryUnitary(weights2, wires=[0, 1, 2])
return qml.probs(wires=[0, 1, 2])
* Added the `IQPEmbedding` template, which encodes inputs into the diagonal gates of an IQP circuit. [(605)](https://github.com/XanaduAI/pennylane/pull/605)
<img src="https://pennylane.readthedocs.io/en/latest/_images/iqp.png"
width=50%></img>
* Added the ``SimplifiedTwoDesign`` template, which implements the circuit design of [Cerezo et al. (2020)](<https://arxiv.org/abs/2001.00550>). [(#556)](https://github.com/XanaduAI/pennylane/pull/556)
<img src="https://pennylane.readthedocs.io/en/latest/_images/simplified_two_design.png"
width=50%></img>
* Added the ``BasicEntanglerLayers`` template, which is a simple layer architecture of rotations and CNOT nearest-neighbour entanglers. [(555)](https://github.com/XanaduAI/pennylane/pull/555)
<img src="https://pennylane.readthedocs.io/en/latest/_images/basic_entangler.png" width=50%></img>
* PennyLane now offers a broadcasting function to easily construct templates: `qml.broadcast()` takes single quantum operations or other templates and applies them to wires in a specific pattern. [(515)](https://github.com/XanaduAI/pennylane/pull/515) [(#522)](https://github.com/XanaduAI/pennylane/pull/522) [(#526)](https://github.com/XanaduAI/pennylane/pull/526) [(#603)](https://github.com/XanaduAI/pennylane/pull/603)
For example, we can use broadcast to repeat a custom template across multiple wires:
python
from pennylane.templates import template
template
def mytemplate(pars, wires):
qml.Hadamard(wires=wires)
qml.RY(pars, wires=wires)
dev = qml.device('default.qubit', wires=3)
qml.qnode(dev)
def circuit(pars):
qml.broadcast(mytemplate, pattern="single", wires=[0,1,2], parameters=pars)
return qml.expval(qml.PauliZ(0))
pycon
>>> circuit([1, 1, 0.1])
-0.841470984807896
>>> print(circuit.draw())
0: ──H──RY(1.0)──┤ ⟨Z⟩
1: ──H──RY(1.0)──┤
2: ──H──RY(0.1)──┤
For other available patterns, see the [broadcast function documentation](https://pennylane.readthedocs.io/en/latest/code/api/pennylane.broadcast.html).
<h3>Breaking changes</h3>
* The `QAOAEmbedding` now uses the new `MultiRZ` gate as a `ZZ` entangler, which changes the convention. While previously, the `ZZ` gate in the embedding was implemented as
python
CNOT(wires=[wires[0], wires[1]])
RZ(2 * parameter, wires=wires[0])
CNOT(wires=[wires[0], wires[1]])
the `MultiRZ` corresponds to
python
CNOT(wires=[wires[1], wires[0]])
RZ(parameter, wires=wires[0])
CNOT(wires=[wires[1], wires[0]])
which differs in the factor of `2`, and fixes a bug in the wires that the `CNOT` was applied to. [(609)](https://github.com/XanaduAI/pennylane/pull/609)
* Probability methods are handled by `QubitDevice` and device method requirements are modified to simplify plugin development. [(573)](https://github.com/XanaduAI/pennylane/pull/573)
* The internal variables `All` and `Any` to mark an `Operation` as acting on all or any wires have been renamed to `AllWires` and `AnyWires`. [(614)](https://github.com/XanaduAI/pennylane/pull/614)
<h3>Improvements</h3>
* Improvements to the speed/performance of the `default.qubit` device. [(567)](https://github.com/XanaduAI/pennylane/pull/567) [(#559)](https://github.com/XanaduAI/pennylane/pull/559)
* Added the `"backprop"` and `"device"` differentiation methods to the `qnode` decorator. [(552)](https://github.com/XanaduAI/pennylane/pull/552)
- `"backprop"`: Use classical backpropagation. Default on simulator devices that are classically end-to-end differentiable.
The returned QNode can only be used with the same machine learning framework (e.g., ``default.tensor.tf`` simulator with the ``tensorflow`` interface).
- `"device"`: Queries the device directly for the gradient.
Using the `"backprop"` differentiation method with the `default.tensor.tf` device, the created QNode is a 'white-box', and is tightly integrated with the overall TensorFlow computation:
python
>>> dev = qml.device("default.tensor.tf", wires=1)
>>> qml.qnode(dev, interface="tf", diff_method="backprop")
>>> def circuit(x):
... qml.RX(x[1], wires=0)
... qml.Rot(x[0], x[1], x[2], wires=0)
... return qml.expval(qml.PauliZ(0))
>>> vars = tf.Variable([0.2, 0.5, 0.1])
>>> with tf.GradientTape() as tape:
... res = circuit(vars)
>>> tape.gradient(res, vars)
<tf.Tensor: shape=(3,), dtype=float32, numpy=array([-2.2526717e-01, -1.0086454e+00, 1.3877788e-17], dtype=float32)>
* The circuit drawer now displays inverted operations, as well as wires where probabilities are returned from the device: [(540)](https://github.com/XanaduAI/pennylane/pull/540)
python
>>> qml.qnode(dev)
... def circuit(theta):
... qml.RX(theta, wires=0)
... qml.CNOT(wires=[0, 1])
... qml.S(wires=1).inv()
... return qml.probs(wires=[0, 1])
>>> circuit(0.2)
array([0.99003329, 0. , 0. , 0.00996671])
>>> print(circuit.draw())
0: ──RX(0.2)──╭C───────╭┤ Probs
1: ───────────╰X──S⁻¹──╰┤ Probs
* You can now evaluate the metric tensor of a VQE Hamiltonian via the new `VQECost.metric_tensor` method. This allows `VQECost` objects to be directly optimized by the quantum natural gradient optimizer (`qml.QNGOptimizer`). [(618)](https://github.com/XanaduAI/pennylane/pull/618)
* The input check functions in `pennylane.templates.utils` are now public and visible in the API documentation. [(566)](https://github.com/XanaduAI/pennylane/pull/566)
* Added keyword arguments for step size and order to the `qnode` decorator, as well as the `QNode` and `JacobianQNode` classes. This enables the user to set the step size and order when using finite difference methods. These options are also exposed when creating QNode collections. [(530)](https://github.com/XanaduAI/pennylane/pull/530) [(#585)](https://github.com/XanaduAI/pennylane/pull/585) [(#587)](https://github.com/XanaduAI/pennylane/pull/587)
* The decomposition for the `CRY` gate now uses the simpler form `RY CNOT RY CNOT` [(547)](https://github.com/XanaduAI/pennylane/pull/547)
* The underlying queuing system was refactored, removing the `qml._current_context` property that held the currently active `QNode` or `OperationRecorder`. Now, all objects that expose a queue for operations inherit from `QueuingContext` and
register their queue globally. [(548)](https://github.com/XanaduAI/pennylane/pull/548)
* The PennyLane repository has a new benchmarking tool which supports the comparison of different git revisions. [(568)](https://github.com/XanaduAI/pennylane/pull/568) [(#560)](https://github.com/XanaduAI/pennylane/pull/560) [(#516)](https://github.com/XanaduAI/pennylane/pull/516)
<h3>Documentation</h3>
* Updated the development section by creating a landing page with links to sub-pages containing specific guides. [(596)](https://github.com/XanaduAI/pennylane/pull/596)
* Extended the developer's guide by a section explaining how to add new templates. [(564)](https://github.com/XanaduAI/pennylane/pull/564)
<h3>Bug fixes</h3>
* `tf.GradientTape().jacobian()` can now be evaluated on QNodes using the TensorFlow interface. [(626)](https://github.com/XanaduAI/pennylane/pull/626)
* `RandomLayers()` is now compatible with the qiskit devices. [(597)](https://github.com/XanaduAI/pennylane/pull/597)
* `DefaultQubit.probability()` now returns the correct probability when called with `device.analytic=False`. [(563)](https://github.com/XanaduAI/pennylane/pull/563)
* Fixed a bug in the `StronglyEntanglingLayers` template, allowing it to work correctly when applied to a single wire. [(544)](https://github.com/XanaduAI/pennylane/pull/544)
* Fixed a bug when inverting operations with decompositions; operations marked as inverted are now correctly inverted when the fallback decomposition is called. [(543)](https://github.com/XanaduAI/pennylane/pull/543)
* The `QNode.print_applied()` method now correctly displays wires where `qml.prob()` is being returned. [542](https://github.com/XanaduAI/pennylane/pull/542)
<h3>Contributors</h3>
This release contains contributions from (in alphabetical order):
Ville Bergholm, Lana Bozanic, Thomas Bromley, Theodor Isacsson, Josh Izaac, Nathan Killoran, Maggie Li, Johannes Jakob Meyer, Maria Schuld, Sukin Sim, Antal Száva.