Added
* 6760518dea19334a21442200bef647e4c07f3636
* LLM abstraction of the temporal profile model
* 13d001c76e3de40786dce75e76e56a13a821173a
* set of event logs for fairness assessment (hospital, hiring, lending, renting)
* e3044278b3e7d984c7fdf9e39554cc4551332739
50f59379fb8f49bbe6eb1796c6664a6057225b95
* added OCEL filters:
* length of a connected components
* presence of at least an object of a given object type
* activity executed
Changed
* 84629e2ea342348e30aa04a7d41ad7b39159b400
* changed case-based text abstraction header text
* c3886beff7abc82db56c60835479f47a76e545d6
* refactored log_to_interval_tree methods in two methods
(log to intervals, and intervals to tree)
* added queue-related examples
* da3a12f615dba3c46793a2d9977dfca11dad85b0
* avoid annotation start/end edges in DFG with performance metrics
* 37fba9285cfde95309142e4404f9cfbcb2b9296c
* visualizations support nanoseconds granularity when needed
* afb6f6ba74c03f422ce8d8417f840f6eb6aa3a6e
* inductive miner - parameter to disable the computation of fall-throughs
and the strict sequence cut.
* 49e738a7aee6e05ecf0ec50cd6aaa4cd0668687d
* inductive miner - optimization in the computation of the transitive relations
Deprecated
Fixed
* 12c9d877e5fb27b709d06c21310ab32868c2ea74
* bug fix textual abstraction attributes LLM
* 3b9fb1ffc9646cf56a0b84a9b95dfdfd9b7fd565
* small fixes pre-existing Jupyter notebooks
* 17f1340cc8a1095e6cdd8a8d85b92a3800a1e7f9
* bug fix textual abstraction log skeleton
* 1217473888b97a00f34834b4746bb7f7e4744df3
* bug fix PuLP solver with extremely low weights
* badbff239cf8a703e7d05c1cc2fc6d51af8aa7d7
* bug fix WOFLAN when no basis vectors are identified
* f528509c6b5117aca6285686e78175dbcf4ba057
* fixed path to Graphviz.JS
* ca79aa9b9e51ba3a95665d5d53c8e5ab5028bf12
* minor fix TBR generalization parameters
* 57a30fb452a759bc71f707e67bf0f63118194b7f
* method to sample OCEL connected components is fixed
* 051d98cd0bfbf86419fe68f6cb0c1f139855cfdf
* fixed divergence from Github repo
* e0cbce6b90a16ef1e21edca45b83d69e1743674c
* fixed typo in OCPN discovery method
* 0af7368ce306678466df759ca15359c1e3901bcd
* fixed discover_petri_net_inductive multi_processing parameter
default value.
* 23aae39adf83f199a3b53533c45cbae4c7a9354e
* bug fixes OCEL feature extraction
* a3faf71ac4eddb22f1bc80a35c752b6b9d98df99
* bug fix direct conversion process tree -> BPMN (loops with several REDOs)
* fa242485e6c99dded04d1d9c10ee1ed81ea96252
* bug fix OCEL2.0 SQLite importer
* 0e1b0daad489eb8100cddd2105e6405862a184de
* fixed parameters in OCPN discovery
Removed
* bf5574a34a31b93024dd9feb54acc5cc475640bd
* change-of-mind on format_dataframe deprecation warning
Other
* 916ea3163119afe7aa0fc9f6c43624147d6c0f9f
* reference to published paper in OCEL feature extraction
* 549aa7c6766f1a51425a7a65673173c55d9731e9
* updated reference to PM4Py website
* 20ce84db4e195937c77280c950ff12083fc5833b
* example for log granularity change
* 0de0be4fa11183f034fbb61e936dee365bbdea4a
* example for the management of stochastic Petri nets
* 570df6c21a03e6ac37ba2d7c9af160e8b175a68f
* manual creation of the constraints of the log skeleton (example)
* 959a685696da725180be0675fd00aaede9bb17bd
* examples for LLM-based fairness
* 7a98fe6b943db9d2402a4b867e8f6a441cdde243
* docstring for OC-DFG discovery
---