-------------
*PR 206*
* Creation of a Deep RL tutorial, in the user guide.
*PR 132*
* New tracker class :class:`rlberry.agents.bandit.tools.BanditTracker` to track statistics to be used in Bandit algorithms.
*PR 191*
* Possibility to generate a profile with :class:`rlberry.agents.manager.ExperimentManager`.
*PR 148, 161, 180*
* Misc improvements on A2C.
* New StableBaselines3 wrapper :class:`rlberry.agents.stable_baselines.StableBaselinesAgent` to import StableBaselines3 Agents.
*PR 119*
* Improving documentation for agents.torch.utils
* New replay buffer :class:`rlberry.agents.utils.replay.ReplayBuffer`, aiming to replace code in utils/memories.py
* New DQN implementation, aiming to fix reproducibility and compatibility issues.
* Implements Q(lambda) in DQN Agent.
*Feb 22, 2022 (PR 126)*
* Setup :code:`rlberry.__version__` (currently 0.3.0dev0)
* Record rlberry version in a ExperimentManager attribute equality of ExperimentManagers
* Override :code:`__eq__` method of the ExperimentManager class.
*Feb 14-15, 2022 (PR 97, 118)*
* (feat) Add Bandits basic environments and agents. See :class:`~rlberry.agents.bandits.IndexAgent` and :class:`~rlberry.envs.bandits.Bandit`.
* Thompson Sampling bandit algorithm with gaussian or beta prior.
* Base class for bandits algorithms with custom save & load functions (called :class:`~rlberry.agents.bandits.BanditWithSimplePolicy`)
*Feb 11, 2022 (83, 95)*
* (fix) Fixed bug in :meth:`FiniteMDP.sample()`: terminal state was being checked with `self.state` instead of given `state`
* (feat) Option to use 'fork' or 'spawn' in :class:`~rlberry.manager.ExperimentManager`
* (feat) ExperimentManager output_dir now has a timestamp and a short ID by default.
* (feat) Gridworld can be constructed from string layout
* (feat) `max_workers` argument for :class:`~rlberry.manager.ExperimentManager` to control the maximum number of processes/threads created by the :meth:`fit` method.
*Feb 04, 2022*
* Add :class:`~rlberry.manager.read_writer_data` to load agent's writer data from pickle files and make it simpler to customize in :class:`~rlberry.manager.plot_writer_data`
* Fix bug, dqn should take a tuple as environment
* Add a quickstart tutorial in the docs :ref:`quick_start`
* Add the RLSVI algorithm (tabular) :class:`~rlberry.agents.RLSVIAgent`
* Add the Posterior Sampling for Reinforcement Learning PSRL agent for tabular MDP :class:`~rlberry.agents.PSRLAgent`
* Add a page to help contributors in the doc :ref:`contributing`